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Abstract

A space-time discontinuous Galerkin (DG) finite element method for nonlinear water waves in an inviscid and incom-
pressible fluid is presented. The space-time DG method results in a conservative numerical discretization on time depen-
dent deforming meshes which follow the free surface evolution. The algorithm is higher order accurate, both in space and
time, and closely related to an arbitrary Lagrangian Eulerian (ALE) approach. A detailed derivation of the numerical algo-
rithm is given including an efficient procedure to solve the nonlinear algebraic equations resulting from the space-time dis-
cretization. Numerical examples are shown on a series of model problems to demonstrate the accuracy and capabilities of
the method.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In many applications the evolution of large amplitude water waves is dominated by gravity and the fluid
can be considered inviscid and incompressible, with the velocity field irrotational. This allows the introduction
of a potential function which satisfies the Laplace equation together with nonlinear boundary conditions at
the free surface. The position of the free surface is unknown and must be determined as part of the solution
process. The solution of free surface problems is, however, nontrivial and finite element methods provide an
excellent technique to solve these problems, in particular when one is interested in higher order accuracy. In
addition, they allow the use of efficient (iterative) sparse matrix solvers and can also be extended to more com-
plex physical models, e.g. flows with vorticity and/or viscosity.

An important aspect in the numerical discretization of water wave problems is that the motion of the
free surface requires that the computational mesh is continuously updated in order to follow the free sur-
face evolution. This requires that the finite element algorithm can efficiently and accurately deal with
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deforming elements. The main challenge in computing large amplitude water waves is that one needs a
highly accurate numerical scheme in order to simulate waves with minimal dispersion and dissipation
errors for a long period of time, while the nonlinearity and mesh deformation can easily introduce numer-
ical instabilities.

In this article we discuss a new space-time discontinuous Galerkin (DG) method for nonlinear water
wave problems. In this method basis functions are used which are discontinuous both in space and time
and the problem is directly considered in four dimensional space. This approach is well suited for unsteady
free surface problems since the numerical discretization remains conservative on time dependent deforming
meshes. The space-time DG discretization also results in an extremely local, element based discretization,
which is beneficial for parallel computing and maintaining high order accuracy on unstructured meshes.
In particular, space-time methods are well suited for ip-adaptation, which consists of local mesh refinement
and/or the adjustment of the polynomial order in individual elements. The main motivation for the algo-
rithm discussed in this article originates from the space-time DG techniques which we developed for com-
pressible flows [13,25,26,28] and the DG technique for linear free surface water waves [27]. These two
approaches are combined in this article and provide a new way to compute nonlinear water waves. More
general information about DG methods for elliptic and hyperbolic partial differential equations can be
found in [4,8-10].

The study of water waves has interested researchers over many years. Overviews of the theoretical analysis
of free surface waves can be found in for instance [15,20,30]. Finite element methods for nonlinear water wave
problems modeled by the Laplace equation have been developed in [7,16,17,29,31,32], and for the closely
related spectral element methods in [11,21,22]. A particularly important technique is provided by the so called
arbitrary Lagrangian Eulerian (ALE) method. The ALE technique provides more flexibility in choosing the
velocity of the mesh points in the mesh deformation algorithm, which only needs to be tangential to the free
surface and not necessarily equal to the fluid particle velocity. This makes it much easier to maintain a rea-
sonable mesh quality during the mesh deformation process. The ALE method is extensively used for many
applications requiring moving interfaces and boundaries and applied to free surface waves in for instance
[5,12,18,23,24]. The space-time discontinuous Galerkin finite element method discussed in this article also
belongs to the class of ALE schemes, but this is not immediately obvious. For an explanation of the link
between space-time and ALE methods see [19,26]. The space-time DG method has so far only been applied
to shallow water flows [1-3], including the wetting and drying of sand banks and beaches, but not to nonlinear
water waves modeled by the Laplace equation.

The article is organized as follows. In Section 2, we present the equations governing nonlinear water waves.
The geometry of the space-time domain, some necessary function spaces and trace operators are defined in
Section 3. In Section 4, we derive the weak formulation for the space-time discontinuous Galerkin finite ele-
ment discretization for nonlinear water waves. This formulation results in a large system of nonlinear alge-
braic equations which are solved with a Newton method. The main aspects of this algorithm are discussed
in Section 5, whereas the details are given in the appendix. Section 6 contains numerical results for linear
and nonlinear problems to demonstrate the accuracy and capabilities of the method. Finally, some concluding
remarks are drawn in Section 7.

2. Equations governing nonlinear water waves

Assume that the fluid is incompressible and inviscid, with the velocity field irrotational. The flow domain
Q(1) ¢ R* at time 7 is bounded by a free surface I's, a solid boundary I'y, and in certain cases also a periodic
boundary I'p, such that I's U Ty U T» = 0Q. We assume that I's, I'y and I are nonoverlapping and Lipschitz
continuous, with I'g a nonzero surface measure. The free surface is defined as

Is:={(t,x,y,2) € R*|f(t,x,y,z) = 0} (2.1

with x, y, z the spatial coordinates in a standard Cartesian coordinate system. We assume that the flat water
surface is given by z = 0, with the z-direction pointing upward from the flat water surface, T

We introduce a velocity potential ¢(¢,x, y, z), with u = V¢ the fluid velocity, where V = (£, 2 ,%) denotes
the nabla-operator. We make the various parameters dimensionless by redefining them as '
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|H
¢ — H\/Hg.¢, (x,y,z) = H(x,y,z), t— gt, and u — u\/Hg.,

where g is the gravitational constant and H the average water depth. The potential function ¢ for nonlinear
water waves then must satisfy for ¢ € (#, ') the Laplace equation:

~V-V¢=0 in Q(¢). (2.2)
In addition, we have the following boundary conditions. At solid surfaces we impose the boundary condition:
-V =gy(t) at I'y(t) (2.3)

with 72 € R? the unit outward normal vector to 0Q and g, : I'y — R the prescribed normal velocity at I'y.
The nonlinear free surface boundary conditions consist of the dynamic condition:

W +%v¢(t,x,y,z) Vo(t,x,y,2) +z=0, Y(x,y,z) € I's(t) (2.4)
and the kinematic condition:

W +Vo(t,x,y,2) - Vf(t,x,y,z) =0, V(x,y,z) € Is(t). (2.5)
For certain problems we also consider periodic boundary conditions at I'p:

Ot x+Le,y+L,,z) = ¢(t,x,9,2). (2.6)

Here L., L, are the length of the periodic domain in the x- and y-direction, respectively. If the waves are not
overturning then we can introduce a wave height {, such that

f(t,x,y,z) = C(t7x7y) —z=0. (27)

As initial conditions, we either start without any waves with ¢(¢,x,y,z) = {(fo,x,y) = 0 and the waves are
generated by a wave maker; or, we start with an analytic wave field and ¢, { are known at initial time.

Note, if we change ¢ — ¢ + ¢, with ¢ € R an arbitrary constant, then the equations and boundary condi-
tions (2.2)—(2.6) remain unchanged. Hence, the potential ¢ is determined up to an arbitrary constant.

3. Space—time domain, function spaces and traces

Since the domain boundaries 0Q2 are time dependent and need to be determined as part of the solution, it is
beneficial to introduce a space-time formulation. In a space—time formulation no distinction is made between
space and time and the discretization is obtained directly in R*. The key benefit of this approach is that the
numerical scheme will be exactly conservative on a moving and deforming mesh. Consider a domain
& C R*. A point x € R* has coordinates (¢,%), with ¥ = (x,y,z). The space-time domain boundary 04 consists
of the hypersurfaces Q) := {x € 06|t = to}, Qr :={x € 08|t =T} and Q:= {x € 0|ty < ¢t < T}. The space—
time normal vector at 08 is defined as n = (n,, ﬁ)T, with 7, the temporal component and 7 the spatial compo-
nent. The space-time boundary Q is further subdivided as Q =Ty UT U (I'p X (¢, T)), with 'y, and I -
describing the evolution of the free surface and solid boundary in R*, respectively, such that
Fs(t) = Fec/ N {t} and FN(I) = F1 n {t}

The space-time domain is subdivided into a finite number of space-time slabs, which are constructed as
follows. Consider the time interval . = [f),T], partitioned by an ordered series of time levels
ty <t <---<ty=T. We denote the nth time interval I, = (t,,%,:1), with .# = U,I,. A space-time slab is
now defined as the domain &" := & N I,, with boundaries Q(¢,), Q(¢,,1) and Q" = 0&" \ (Q(¢,) U Q(¢,11)).

In each space-time slab we introduce a finite element tessellation .7, with space-time elements .#". Let
Q,(t,) be subdivided into N nonoverlapping shape regular spatial elements K", such that Q,(z,) — Q(z,)
as h — 0, with /i the radius of the smallest sphere containing all elements K7,/ =1,...,Ns. Att,,, the spatial
elements K" are obtained by mapping the vertices of the elements K” to their position at 7,,,. The space—time
elements # € 7, are then obtained by interpolation in time between the elements K" and K", such that
&y =Uygery A — &" as h — 0. More details about the specific element mappings will be given in Section 5.



20 JJ.W. van der Vegt, Y. Xu | Journal of Computational Physics 224 (2007) 17-39

In the space-time slab we consider the following faces. Let I denote the union of the faces of all elements
H e T e I"= U’,,.E,TZ@%, I'y =TI\ 06} the union of all interior faces, and I'y := I'" \ (Q(t,) U Q(t,1))
the union of all interior faces and faces at Q, := 087 \ (Q(z,) U Q(T,+1)). We denote the set of all faces in
I, by {#"}, all interior faces by {#7}, all faces on I'". := I, N1, by {#",}, all faces on I, :=T'y» N1,
by {#%,} and all faces on 0&} by {Z%,}. Note, faces at I'p x (¢, T) are considered interior faces, where
the periodicity relation (2.6) is used to connect the external part of I'p to the interior of the domain Q.

We define the finite element spaces /) and 27 associated with the tessellation 77 as

vi={ve’(&))|vl, € 2,(X), YA €T}},
o= {a e [Lz(é"};)f’au. e [2,(H), VH € ./fz}

with L?(&7}) the space of Lebesgue square integrable functions on &}. The finite element space W, associated
with the free surface is defined as

= {v e LZ(FZ/)‘U

sy €PF), NF CTYY,

where L*(I",) is the space of Lebesgue square integrable functions on I, and 2, polynomials of order p.

Next, we define some trace operators to manipulate the numerical fluxes in the discontinuous Galerkin for-
mulation. For v € V) we define the average (v) and jump [[v]] operators of v at an internal face 7 € 77 as
follows:

(v) = %(UL +ur), |[v]] := vrhg + veiig (3.1

with v := v[,,,, and vg := v, and A", A the elements connected to the face # € #] with outward space
normal vectors 71, and g, respectively. For ¢ € 27 we similarly define ¢, and gx and set:

1 ~ _ .
() =59, + dr), (q]] == q, - 7L + qg - 7ir, at F € F]. (3.2)

For 7 € 77, the set of exterior boundary faces, each v € V' and ¢ € 27 has a uniquely defined restriction on
Z and we define:

([v]] :=vn, (q):=q atF eF,. (3.3)

Since we do not require either of the quantities (v) or [[¢]] on boundary faces, we leave them undefined.
For the definition of the primal DG formulation we need to define the following lifting operator
R - [LZ(F"Q)]3 — "

P

R(q) -odx = / q-(o)ds, Vo€l (3.4)
g; ,
and for a face # € 7" also the local lifting operator %5 : [L*(F)] — DS
R7(q)-odx = / q-(o)ds, Vo€l (3.5)
Note, the local lifting operator %5 is only nonzero in the two elements connected to the face #.
4. Space—time discontinuous Galerkin formulation

In this section we summarize the derivation of the space-time discontinuous Galerkin finite element discret-
ization for nonlinear water waves given by (2.2)—(2.6). We will follow the approach from Brezzi et al. [6],
which is analyzed in detail for the Laplace equation in [4] and for linear water waves in [27]. The key benefit
of this technique is that the DG formulation does not contain mesh dependent stabilization coefficients, as for
instance occur in the interior penalty method.

The novel ingredient in the finite element formulation discussed in this section is to incorporate the kine-
matic condition at the free surface (2.5) as a natural boundary condition in the finite element formulation. The
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space—time finite element discretization then will automatically account for the mesh movement necessary to
follow the free surface waves. In order to accomplish this we need to establish a relation between the function f
describing the free surface (2.1), the wave height { and the space-time normal vector n. A straightforward cal-
culation using (2.7) shows that

v &) 1 (ac oL >T
n=,n)= =4 _7_7_771 4.1
(™) =[G =T~ V] \a ax By (41)
with V the space-time nabla operator defined as V = (a, , aav , aay , aaz ) . We can rewrite the kinematic condition

(2.5) as

L oy Y,

TR/ 2

which implies using (4.1) that the space component of the normal velocity at the free surface I' is equal to
-1 o
V(-2 o

This relation can be used directly in the DG formulation of the Laplace equation. For the DG discretization of
the Laplace equation (2.2) we rewrite this equation into a first order system:

u=vVep, -V -u=0, in Q, (4.4)

-V = (4.3)

where u represents the fluid velocity and ¢ the potential. Multiplying (4.4) with arbitrary test functions ¢ € 27
andv e V), integrating by parts with respect to X over each element " € 7 (twice for (4.5)), and summation

over all elements in 7 , we obtain for u;, € 27 and ¢, € V} the relation:
/ w-ode =Y / Vi -odx+ > / (px — )0 - i ds, (4.5)
Hegy A Hegn JOX
/ Vi - up)vdx = Z / u, - Vyodx — Z / ng - ugvds =0 (4.6)
HETT Hegn JH Hegh SN

for Vo € 2 and Vo € V), where V,=V|, for all #" € 7,. Here, the numerical fluxes it(u;) and (V,uy, 63
are introduced to account for the multivalued traces at I'. The different discontinuous Galerkin formulations
proposed so far in the literature can all be derived by specifying these numerical fluxes. A full account is given
in [4]. In order to simplify the sums over the element boundaries 04", we use a slightly modified identity (3.3)
in [4], which states for ¢, € R*:

Z/ P (0,g,)" - nyds = Z/ Py Ny ds, (4.7)
Aegh JoX oA

HET

= [ el @ds+ [ (o)llatas (48)

n
F[)

and can be proved by a straightforward calculation using the fact that at Q(#,) and Q(¢,.,) the space-time
normal vector n is equal to n = (£1,0,0, O)T. Note, this relation also implies that there is no direct coupling
between the different space—time slabs. If we introduce (4.8) into (4.5) and (4.6) we obtain:

[Zuh.am—/gzvh¢h.am+/rn [[gs_qshﬁ.<a>ds+/rg<a>—¢h>[[a]]ds, (4.9)

/Huh-v;,vdx— [ 1@ as— [ @l =o (4.10)

r

The numerical fluxes in the DG formulation from Brezzi et al. [6] are defined as
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g < > on r07

¢:{¢ on ", UI%, (4.11)
it = (up) — o0 ([[¢,]]) on I, (4.12)
i=u nF” ur, (4.13)

where a,(q) = n-(%7(q)) for F € F/, n, € R a positive number. If we introduce the lifting operator (3.4)
into (4.9) and use (4.11) in the last contribution, then we obtain the following equation for u,, almost
everywhere:

uy = Vi + 2([[d — §,]]). (4.14)
The weak formulation for the potential ¢, is now obtained by introducing the relation (4.14) for u, into
(4.10):
Find a ¢, € V7, such that for all v € V7, the following relation is satisfied:

[ Tt Twaxs [ 6= o) @ [ 00 @as = [ @) (@llas [ g

v o,
v %y 41
+/rn Vil —o) o B0 (4.15)

Here we used (3.4) to transform the integral with the lifting operator over &} into an integral over I'j, since
[[d) ¢, =0at I'"-UTI",. We also introduced the boundary condition (2.3) at the solid surfaces I'"",- and the
kinematic free surface boundary condition (4.3) at I'f,. Using the definitions of the jump and average opera-
tors (3.1)—(3.3), the numerical fluxes (4.11)—(4.13), and the local lifting operator (3.5), we can transform the
following integrals over I'j in (4.15) into

1@ =0 @unds == [ [i9u])- (Tuo)ds

FeF]

[ @as= [ o) Fubias 35 [ o) #(06 - )

= > s | 2] - 25 (([d4]]) d, (4.16)

FeT! &

while the fourth integral in (4.15) is zero. The integrand in the second integral at the righthand of (4.16) in-
creases the stencil of the DG discretization for each element %" beyond its nearest neighbors. Using (3.5), the

fact that [[¢ — ¢,]] = 0 at I' - U I, and the relation ([ — b)) = —[[¢4]] at I'j, we can approximate this con-
tribution as
) / Aol (0~ bl v - 3 [ ) 2 (101

with n,the number of faces of an element in the tessellation. This approximation has no effect on the accuracy
and stability of the space-time DG discretization, see [25], and the stencil now only contains contributions
from the element itself and its nearest neighbors.

The discretization of the dynamic boundary condition (2.4) can be straightforwardly obtained by multiply-
ing this equation with test functions v, € W, and integration over the free surface.

If we introduce now the bilinear form B, : V” X V" — R and the linear form L, : V” — R, which are defined
as

Bi(u,0) = [ Viu-Vyodr— [ ([[ul] - (Vo) + [[o]] - (Vi) ds+ D (1 +n7) [ R ([l]) - 25 ([[0]]) dx,

on n on
h Iy FeF] &

(4.17)
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o= [ ey

r

then the weak formulation describing the evolution of nonlinear water waves can be formulated as
Find a (¢, () € V) x W, such that for all (vi,v2) € V) x W7,

Bh<¢h,v1>+(%%,m) +(C7C) — L(w). (4.18)
wG-a o), T\ma -t

0 1= — B
<%a”2) + (z Vidy - Vady, UZ> + (¢ — &y, U;)rw(z;) + (G, UZ)I"'}/, =0, (4.19)
r, r

&
where (u,v) m = J;» uvds denotes the L*inner product at the free surface I'",, which is approximated as
K3 s

z = {,(t,x,y). In addition, the following notation is used I'y,(¢]) = limoI'¢(t, + €), qﬁhi = lim, ¢, (#, L €),
Chi = lim,o{, (¢, £ €), with ¢, and {, the known potential and wave height from the space-time slab
&t

Remark 4.1. In (4.18) and (4.19) also weak coupling terms are added for the wave height and potential
function, which are inner products at I'¢(£F). These terms are necessary because the polynomial basis
functions in the space-time slab &) are discontinuous in time and the solution would otherwise not be
connected to the previous space-time slab &7~!'. We can, however, not use standard weak coupling terms in

(4.18), as we did in (4.19), but we need to introduce the scaling factor m in order to balance the weak
h

coupling term with the contribution resulting from the time derivative of the wave height. Otherwise, for small
time steps or large wave heights, the solution would effectively be uncoupled from the solution in the previous
time slab.

Remark 4.2. The second contribution in (4.19) is related to the fluid velocity u;, (see (4.4)) and V¢, should
actually be replaced by

w =V, — > 2([[$)]]) ae onl? (4.20)

TGN
Fery

using (4.14) and the numerical flux for (2), given by (4.11). The use of this relation in (4.19) results in a coupling
of the dynamic boundary condition with the expansion coefficients in the neighboring elements and signifi-
cantly increases the complexity of the space-time discretization. When the computational mesh is, however,
fine enough the contribution [[¢,]] rapidly becomes negligible. Since our test cases did not show any beneficial
effect of adding the contribution of the lifting operator Z([[¢,]]) to (4.19) we decided to omit this
contribution.

5. Algebraic system for the space—time discontinuous Galerkin discretization
The weak formulation for nonlinear water waves (4.18) and (4.19) is transformed into a system of nonlinear
algebraic equations by representing the potential function ¢,, the wave height {; and the test functions v, v, in

each space-time element by a polynomial expansion. For instance, the potential function ¢, € ¥V on hexahe-
dral elements using a tensor product basis can be expressed as

Np
¢h(t,x,y,z):Z(JS%/JV',y?j(t,x,y,z), vxeyz (51)
j=1

with N, = (p + 1)* the number of polynomial coefficients in the DG discretization and p the polynomial order.
The wave height (,(x) is represented as

Ns
Ch(t7x7y) = ZCV‘]’{/V(VJ(LX’)/L Vy S 37’!9’ (52)
j=1
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with N, = (p+ 1)3 the number of expansion coefficients for the wave height. The basis functions /"¢ ; and
Ny are related as

/VV (txy) ’/Vv"//'«,f(i)(t7x7yaC(tax7y))7 forj: la"'7NS

with .#(j) the index set with the vertices of an element #" connected to the face & C I'y. Similar expressions
are used for the test functions v; and v,.

The space-time elements are hypercubes, but the procedure to derive the algebraic equations is essentially
independent of the type of element. The basis functions ./ ; in each space-time element " are defined as

N i(t,x,9,2) = W, o FMt,x,,2)

using the isoparametric mapping:
DL = A (X, 2) Zx//,/ (81,62, 85, 84) (5.3)

with X, ;= (tyj,Xx s y(,fvj,z%‘,-) € [RE4 the coordinates of the vertices of the space-time element and

&= (&, &, 53,54)T € # the local coordinates in the reference element # := -1, 1]4. The basis functions
A in each face at the free surface I, are defined as

N g j(t,x,y) = WjoFgfl(élaf27f3)
using the isoparametric mapping:

Fy :=Fyl,:[-1,1] = %;

Np
txy, Z Xa .9(j)~ /(; (51,5275% )
=1

=

Z o g(),Xx.95G), Y, ]Q)vCV' ) N (&1, 8, 8),
=1

where we assume that the local coordinate & = 1 is at the free surface. The basis functions 1~ ; and N ; are
defined as the tensorproducts of pth order polynomials in the local coordinates . More details are provided in
Appendix A.

In order to define the vertices x,; of the space—time elements in the isoparametric mapping (5.3) we need
p + 1 spatial meshes at different time levels in the space-time slab &, each having the same connectivity. The
first (p + 1)° vertices are the vertices X ; of K(t,), the space-time element att=t,, hence x; = (t,,Xx J) for
j=1,....,(p+1)’. The last (p+1)* vertices are the vertices X! of K(t,11), hence X = (t,,1, %) for
J=N,—(p+ ) +1,.. ,N,. When p > 2 then also vertices of the elements K(z, + (m — I)At/(p — 1)), with
2 <m < p— 1, are necessary for elements at the boundary. In the interior these vertices can be obtained using
linear interpolation, whereas at the domain boundary they must lie at the actual boundary surface.

For a concise description of the finite element discretization we introduce the following vectors
I77 ¢ R, matrices: o7, B", €7 € RNNe T ptT T e RV 7 ¢ RYNs and tensors
GHRT e RNPNp3 QX T ¢ RNV Ny wwhich are defined as

A = / N iV wjdx, B = / VN i VN o jdx,
A A

LR.F A v LR, | _ 7 :
(gij —/ N L,jnL . Vhe/VR_,,-ds, @ljk —/ nL,kJVL,,-Q/VR‘J-dS,
T F

T ON P
%l/]// ::/ N at’//d ds, 77 .= / gy wids,

1

%;% = JV(/,( )JV],( )dS7 "/;97 = /Vyj(t:)./ny_,«(t;)ds,

7 () Z(67)
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o 71

y;-j-/“/ ::/ ,/Vyje/‘/‘y,jds, QZ/]/ _E/ MQ)IVJV)(/ VJV)([dS (55)
ﬂ,‘—

Here, 2" is the index of the elements in the tessellation .77, which contains N, elements, and L, R are the

element indices of the two elements connected to each side of the fac_eAw1th index 7. The number gf free sur-

face faces is denoted as Ng. In addition, we need to define 277, %7 ¢ R"»*"s and 277, #"+7 ¢

RNp*NsxNsxNs \which are related to the free surface contribution:

. 1 . 0N gy 1
QW"/ = JV i 1JdS / 7%, t+ e/if)'t+ dS7
ij (Ch) L |vh( A, ot + F(t |vh C S ( n ) -971( n)

& —Z)| ( ;*Z)|

g 1
d(e ::/ (£ N (8 ds,

@)= [ )
57 () '—/ ! W 2N (VN gi- Vs A g ,)ds 56
= e e (T Tt 56

1
+ / N VTN g alE) - Vb (£ ds,
7@ |Va(( —2)]

-7 — ! ot p . S s
= [ T g Y )T ale]) VN )

with Vg = (awe; ) The integrals are computed by transforming them to the reference element A or the

reference face 7 := -1, 1]*, respectively, using the mappings (5.3) and (5.4). More details are provided in
Appendix B.

The algebraic equations for the expansion coefficients ¢, ; and { ; of the potential and wave height in the
space—time slab &7, respectively, are obtained by introducing the polynomial representations for ¢, and (;, and
the test functions vy, v,, defined in (5.1) and (5.2), into (4.18) and (4.19) and using the fact that these equations
must be satisfied for arbitrary test functions.

The algebraic equations for the discontinuous Galerkin discretization of (4.18) in the space-time slab &)
can be expressed symbolically as

Ly + Q2" —X(2" 2" =1, (5.7)

with @" € R""7 and 2" € RM"” the expansion coefficients for the potential and wave height, respectively.
The construction of the matrix L;; € R""7*¥*N7 is discussed in Appendix C. The nonlinear free surface con-
tribution Q, X € R""7 are defined as

N oy Aak"”v‘f-f ds
Z@/, /
\/Zp,lz,, Lo pla Vs gy VsHh gg+1

N / N o i(ty) N 7,4(t,) ds
7)) \/Zﬁf;]Z;V;]C!/’,pé’f/’ﬁqums”,p(t:) ! VS/VF/’,q(trJ,r) + 1

and
Ny
Xl(f,z”‘l)=2cf;j%/ At ()& |
=1 707 \/z 712 thV’pCV’qvS/‘/(/p( ) VSe/V(/fq( )+1

The nonlinear algebraic system (5.7) is solved with a Newton method. For this purpose we linearize Q and X
around the mth Newton iterate Z™
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N,

0/(2) = Z "),

=

Xi(Z: 2 = X220 +Z azf; z{")
with

6Q A /, e, & (m AT

<71[ g ‘%z ikl (Z ))7
0Z, =1 k=1 !

- ZZJ" 2 (),

=
If we introduce the matrix

(2™ XX L) g

Oz 2" =

°r 0
then we can write the linearized form of (5.7) as
L“(Dn + @(gn(m)7 gn—l)gn;(m+l) — @(gn(m)’ gn—l)gn;(m) _ Q(gn(m)) _i_)((c@pn(m)7 gn—l) +Lh (58)

Using the element integrals defined in (5.5), the algebraic equations for the dynamic condition at the free sur-
face (4.19) can be expressed in each element .#" connected to the free surface I'y as

Z¢IJ%XJ+Z¢WJ@/+/+Z Z¢/j¢/lgxﬂ ""Z@ﬂ,yfj Z¢r1 IV /

These nonlinear equations are also solved with a Newton method. Assume qS . is the mth iterate for the
expansion coefficients ¢, ; in element 4" in the Newton method, then the next appr0x1mat10n is found by
solving the linear system:

Np
z(%“muzdb S
=1
A N () ) I
S LTSS TRt 5
=1 =

The coupled algebraic systems in the Newton procedure (5.8) and (5.9) can be written in matrix form as
<%gm;(nﬁ»l) _ F(.{/n;(m); II/”*I) (510)

with . € R"7 7yt =l ¢ gm7 F € R™” and m; = N,Ns + N,Ny. The linear system (5.10) can be
represented as

L11 le(:ﬂ[n;(m); ffn_l) cDn:(mﬁ»l) _ Fl(ffm(m); Qpn—l)
L21 (¢n,(m)) L22 =Z{pn;(m+l) F2(¢n:(m); ¢n—l)

with @ € R¥*7 and € R"*"” the expansion coefficients for the potential and wave height, respectively. The
matrices L; have dimension Ly, € R"N7 NN 1, e RVN7NNs L e RNNoNNT 15, € RVNNNY Note,
Ly, only depends on the expansion coefficients for the wave height, while L,; only depends on the expansion
coefficients for the potential. As long as the space-time mesh is not deformed the other contributions in the
matrix .# therefore do not have to be updated. The details of the matrix construction for a general unstruc-
tured mesh, which requires some care in the DG algorithm, are given in Appendix C.

The computation of the wave field in a space-time slab now proceeds as follows. Given the mesh at ¢t = ¢,
we construct a space—time mesh by translating the mesh at ¢t = ¢, to the new time level ¢,, ;. On this space-time
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mesh we perform a number of Newton iterations, which consist of solving (5.10), updating L, and F; with the
new coefficients 27"V and L,, and F, with the new coefficients @V until a specified tolerance in
|@m(m+D) _ @mm)| and | gD — g is obtained. Next, the free surface is updated using the computed wave
height coefficients 2! and the interior mesh are moved to maintain a consistent mesh without grid folding
and with a proper distribution of the mesh resolution. Next, a new potential and wave height is computed on
the updated mesh. This process is continued until the difference in wave height and potential on two consec-
utive meshes is within a prescribed tolerance.

The mesh is deformed by the area-orthogonality (AO) grid generator in [14], which we summarize for two-
dimensional problems. The AO method is based on the solution of the following pair of partial differential
equations for the mapping functions x and y:

8Xee + 4x§x’7x5’1 + g1Xny + 2(x§yr] + xny§>y§r1 = 07

Z0Vee T AV Ve + &Yy + 2(xey, + X0y )xe =0
with

&n = xé + y%v

&n = xi +J’,2,~

These equations are generally solved as a Dirichlet problem with boundary values obtained from the physical
boundaries of the free surface and, if present, the prescribed motion of a wave maker. The AO method permits
direct control over geometric grid qualities, such as smoothness, area and “orthogonality”. The mesh gener-
ation equations are discretized by a finite difference method and solved with the successive overrelaxation
method (SOR).

The linear system (5.10) is nonsingular due to the stabilization terms in the DG discretization, but it has a
large condition number because one of the eigenvalues is close to zero. This does not result in a serious loss of
accuracy when the zero mean condition |, ¢, dx = 0 is imposed after the linear system has been solved. This
ensures that a unique solution is obtained for the equation of the potential (2.2)—(2.6). The zero mean condi-
tion is imposed by correcting the numerical solution after each Newton iteration step as ¢, < ¢, — ¢, with
on = ﬁ Jo ®ndx, after which the new expansion coefficients of ¢, are obtained in each element .#" using an
L,-projection onto the basis functions A" ;.

6. Numerical examples

In this section we provide numerical examples to illustrate the accuracy and capabilities of the space-time
DG method for linear and nonlinear water waves. In all examples, the figures present the solution obtained
with a particular choice of the mesh. We have verified with the aid of successive mesh refinements, that in
all cases, the results shown are numerically convergent.

Example 6.1. Accuracy test for linear free surface waves.

The nonlinear space-time DG (STDG) method also works for linear free surface waves. We compare the
accuracy of the STDG algorithm therefore also with the DG algorithm for linear waves discussed in [27].
Linear free surface waves satisfy the equations

—Ap=0, inQ=1[0,2] x[-1,0],

_ (6.1)
n-V¢ =0, atz=-1
with linear free-surface boundary conditions at I'g
0¢
240, (62)
&_9%_ 0 (6.3)

ot 0z
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and periodic boundary conditions at x = 0 and x = 2. The analytic solution of this problem is given by
¢ = ¢pocosh(k(z+ 1)) cos(wt — kx),

where ¢, denotes the amplitude of the velocity potential, £ the wave number and o the frequency of the oscil-
lations, which satisfies the dispersion relation

w* = ktanh(k).

The initial conditions for the free surface potential and wave height at z = 0 are
¢ = ¢, cosh(k) cos(kx),
{ = ¢, cosh(k) sin(kx).

In Tables 6.1 and 6.2 we present the error in the wave height and potential at time ¢ = 2.5 with ¢, = 0.1 in the
L? and L®-norm for the STDG method and the DG method discussed in [27]. For the STDG method, the
basis functions have polynomial degrees p = 1 and p = 2, both in space and time. Also, the order of accuracy
for the different polynomial degrees is given, which indicates that the STDG method has an order of accuracy
O(#*™ + Ar+!) and shows superconvergence in the L*-norm. For the DG method in [27], the basis functions
also have polynomial degrees p = 1 and p = 2 in space, but the time discretization is only second order accu-
rate. That is the reason why we obtain second order accuracy for p = 2 polynomials for this DG method. We
can also compare the error levels, which are significantly smaller for the STDG method than the DG method.

Example 6.2. Linear waves generated by a wave maker.

Next, we consider linear waves generated by a wave maker and compare them with the results obtained in
[27]. The domain is 2 = [0, 10] x [—1,0]. The time harmonic normal velocity profile at the wave maker, which
is positioned at x = 0, is linear in the vertical direction, starting from zero at the bottom and with an amplitude
of 0.05 at the free surface. The frequency of the time-harmonic motion is w,, = 2. Homogeneous Neumann
boundary conditions representing no flow through the boundary surface are assumed at the bottom z = —1
and at the end of the domain at x = 10. The initial free-surface height and velocity potential are zero. All
simulations are done on a mesh of 80 x 20 elements, where the mesh points have a random displacement with
a maximum of 30% of the edge length.

The wave profiles in the domain at 7= 20 and 7 = 50 are presented in Figs. 6.1 and 6.2. The results are
compared with the linear DG algorithm discussed in [27] and show an excellent agreement at 7 = 20 both for
polynomial order p = 1 and 2.

At T = 50, the STDG solution is more accurate for p = 1 than the linear DG method. This is also visible in
the results in Tables 6.1 and 6.2. The results for p = 2 for both methods are still very close, but the STDG
method will be more accurate for longer simulation times since this scheme is third order accurate in time,
whereas the linear DG method is only second order accurate in time.

Table 6.1
Accuracy and order of convergence of the wave height computed with the STDG and the linear DG method [27] for linear free surface
waves

nx x ny STDG DG
L? error Order L™ error Order L? error Order L™ error Order
P! 6x6 3.62¢e—03 - 3.09¢e—02 - 6.56e—02 - 7.74e—02 -
12 x 12 6.43e—04 2.49 7.74e—03 2.00 1.74¢—02 1.92 1.76e—02 2.14
24 x 24 1.14e—04 2.49 1.99¢—03 1.96 4.42¢—03 1.97 4.70e—03 1.90
48 x 48 2.0le—05 2.51 4.86e—04 2.03 1.09¢—03 2.02 1.16e—03 2.02
6x6 3.38e—04 - 4.26e—03 - 8.03e—03 - 8.83e—03 -
P 12x 12 4.28e—05 2.98 8.05¢e—04 2.40 1.44¢—03 2.48 2.36e—03 1.90
24 x 24 7.43e—06 2.53 1.99¢—04 2.01 4.11e—04 1.80 6.74e—04 1.81

48 x 48 6.78¢—07 345 2.53e—05 2.98 1.07e—04 1.94 1.47e—04 2.20
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Table 6.2
Accuracy and order of convergence of the potential computed with the STDG and the linear DG method for linear free surface waves
nx X ny STDG DG
L? error Order L™ error Order L? error Order L™ error Order
pl 6x6 1.48e—03 - 1.15e—02 - 2.35e—02 - 2.37e-02 -
12x 12 2.64e—04 2.49 3.07e—03 1.90 6.76e—03 1.80 6.13e—03 1.95
24 x 24 4.68e—05 2.50 7.77e—04 1.98 1.72e—03 1.97 1.77e—03 1.79
48 x 48 8.29¢—06 2.50 1.95¢—04 2.00 4.32e—04 2.00 4.52e—04 1.97
6x6 5.55¢e—05 - 6.17e—04 - 3.27¢e—03 - 3.42e—03 -
V& 12x 12 5.29¢—06 3.39 7.71e—-05 3.00 5.47e—04 2.58 7.05e—04 2.28
24 x 24 4.20e—07 3.65 7.91e—06 3.29 1.37e—04 1.99 1.68e—04 2.07
48 x 48 3.42¢—-08 3.62 8.43e—07 3.23 3.40e—05 2.01 3.71e—05 2.17
0.15

Fig. 6.1. Wave profile at 7' = 20 generated by a wave maker at x = 0 (randomly disturbed mesh 80 x 20 points, wave maker amplitude
0.05) for polynomial basis functions of degree p = 1 and 2 using the STDG method and the linear DG method in [27].

Example 6.3. Evolution of a slowly modulated wave packet.

In this example we consider nonlinear water waves governed by (2.2)-(2.7) with periodic boundary
conditions in the x-direction. We consider the same case as in [11] to compute the evolution of a slowly
modulated wave packet
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Fig. 6.2. Wave profile at 7 = 50 generated by a wave maker at x = 0 (randomly disturbed mesh 80 x 20 points, wave maker amplitude
0.05) for polynomial basis functions of degree p = 1 and 2 using the STDG method and the linear DG method in [27].

{o(x) = 0.0l exp (—%(x - 77:)2) cos(10x) (6.4)

with zero initial velocity potential in the domain Q = [0,2x] x [—1,0].

In Fig. 6.3, the wave profiles at 7 = 5 and 7 = 10, computed with the STDG method on different meshes
for polynomial orders p = 1 and p = 2, respectively, and initial condition (6.4) are presented. The results for
p =2 on the coarser mesh compare well with the p =1 results on the fine mesh. The numerical results
converge for different meshes and polynomial orders. The long time evolution of the wave profiles can be
compared with Fig. 1a in [11] and show very similar wave interaction phenomena.

Example 6.4. Comparison with exact nonlinear wave solution.

In this example we consider the time domain problem discussed in [31] in a rectangular container with
depth d = 1 and width » = 2. The nonlinear free surface waves satisfy (2.2)—(2.7) with reflecting boundary
conditions. The initial condition is

{o(x) = acos(2nx/b), (6.5)
where o is the amplitude. In [31], numerical results and a second order analytic solution for this problem are
presented.

The space-time computations are conducted for the polynomial order p =1 on a mesh with 40 x 10
elements, and for p = 2 on a mesh with 20 x 10 elements. In Fig. 6.4 the wave elevation {/« at the midpoint in
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Fig. 6.3. Wave profile at 7 = 5 and T = 10, respectively, for nonlinear waves with initial condition (6.4).
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Fig. 6.4. Time history of particle in nonlinear wave with initial condition (6.5) with wave amplitude « = 0.05.
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Fig. 6.5. Grid at 7' = 0 (top) and T = 20 (below) for nonlinear wave in a basin with a bump for initial condition (6.5) with wave amplitude
o = 0.05.
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Fig. 6.6. Time history of particle in nonlinear wave in a basin with a bump for initial condition (6.5) with wave amplitude o = 0.05.
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the x-direction (x = b/2) is given. The STDG results and the second order analytic solution compare well for
the different polynomial orders.

Example 6.5. Nonlinear free-surface waves in a basin with a bump.

In this example we consider the same problem which is discussed in Example 6.4, but now in a basin with a
bump. The aim of these computations is to investigate the effect of large mesh deformation on the accuracy. In
Fig. 6.6 the wave elevation {/u at the midpoint in the x-direction (x = 5/2) is given. We also show the mesh
deformation at time 7 = 0 and 7 = 20 in Fig. 6.5. Even with the relative coarse meshes, the particle history
compare pretty well with the flat bottom case in Example 6.4

Example 6.6. Nonlinear free-surface waves generated by a wave maker.

Next, we consider nonlinear free-surface waves generated by a wave maker. The domain is
Q=1[0,4] x [-1,0]. The frequency of the time-harmonic motion is w, = 2. Homogeneous Neumann
boundary conditions are assumed at the bottom z = —1 and at the end of the domain at x = 4. The initial free-
surface height and velocity potential are zero. At each time step the mesh is deformed to account for the free
surface motion.
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Fig. 6.7. Wave profile at 7 = 7.5 (top) and 7 = 20 (below) for nonlinear waves generated by a wave maker at x = 0 for polynomial basis
functions of degree p = 1 and 2 using the STDG method.
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The wave profiles in the domain at 7 = 7.5 and T = 20 are presented in Fig. 6.7 and show the typical
increase in wave height when the wave is reflected from the wall opposite to the wave maker. The wave profiles
compare well for different meshes and different polynomial order.

7. Concluding remarks

In this article we have developed a space-time discontinuous Galerkin method for nonlinear water
waves. The key features of the method are that the DG discretization is done in four dimensional
space, with time as the fourth dimension, and the use of test and trial functions which are discontin-
uous both in space and time. This technique results in a higher order accurate conservative numerical
scheme on time dependent deforming meshes which are necessary to follow the free surface evolution.
A novel ingredient in the finite element formulation is the incorporation of the kinematic boundary
condition directly into the weak formulation. The space-time discretization then will automatically
account for the mesh movement induced by the wave motion. An efficient solution technique for the
algebraic equations resulting from the space-time discretization is obtained using a Newton method.
This results in a rapidly converging iterative process which can be combined with efficient (iterative)
sparse matrix techniques to solve the resulting linear system. The mesh deformation is controlled by
solving elliptic partial differential equations for the position of the mesh points. This technique results
in a high quality mesh which follows the evolution of the free surface without locally resulting in
meshes which are too coarse or fine. Numerical examples include linear and nonlinear free-surface wave
simulations and illustrate the accuracy and capabilities of the method by comparing the results to
known solutions and verifying dependence of the error on the mesh size. The application to three
dimensional problems is in progress and will aim at the construction of a numerical wave tank which
can simulate large amplitude waves in a model basin. The main purpose of these activities is to provide
accurate information about choosing the proper set up of model experiments and the optimal control
of wave makers.
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Appendix A. Basis functions

The following functions are used to construct the tensor product basis functions on hexahedra and
hypercubes:

p=1: E(Q=30-9
B0 =5(149)

p=2:  E(Q)=-5e1-0)
220 = (1-9(1 +9)
By(0) =53¢0 +2).

The tensor product basis functions A~ ; on the reference element [—1, 1) are then defined as
;V/(élafb &) = §i1(51)§i2(52)§i3(53)
with j =iy + (b — 1) (p+ 1)+ (i5 — 1) (p+ 1) for iy, in, i3 € {1,2,...,p+ 1}.
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The tensor product basis functions 0 ; on the reference element [—1, 1]* are defined as
e/?j(éla CHEE 54) = éil(51)§i2(52)§i3(53)21‘4(54)
WIthJ = il + (12 - 1>(p+ 1) + (l3 - 1)(p+ 1)2 + (l4 - 1>(p+ 1)3 for i17i27i37i4 € {1727' . 7]7"" 1}

Appendix B. Element and face integrals

Given the mapping F, defined in (5.3) we can transform the integrals in the DG formulation into integrals
over the reference element .# = [—1,1]* or the reference face # = [—1,1]’. These integrals can then be
straightforwardly evaluated with a Gaussian quadrature rule. For this purpose we define the Jacobian matrix

J € R as
o ot o ot
o 06 A& 0y
o o & A

OF » 26 3L & O
i TN 2 B.1
6(51762753764) a_y 6_y o 6_) ( )

(SIS TGS B
0 0&H  0& 0y

with (&, &,, &, @)T € [-1, 1]4. The inverse of J is equal to

ot Ox ay 0z
ot ox oy 0z
ot ox ay 0z
ot Ox ay 0z
We denote the first column of /™! as J;' € R*' and the last three columns of /' as J_' € R* and use J "

for the transposed of the inverse of J~! with similar relations for the other Jacobian matrices. The nabla oper-

A ~ T =
ator on the referTence element " is defined as V = (%,%,%,%) and on the reference face & as
o _ (o & o T

V= (acfl ’aéz’a:3> '

The Jacobian matrix J € R is defined as

J = (B.2)

8 0, G

-~ oF, G %
Fo_ %y  _|a & a N
9(&,8,8) 3 0 05 s

06 0L 0G

with (&, &,, @)T €[-1, 1]3. The inverse of J is equal to

ot ox dy

T _ | e

JT =T = > |- (B.4)
ot ox dy

We denote the first column of J ' as J; ! € R¥!.
The integrals defined in (5.5) and (5.6) can now be expressed as

% = /A s det())]dé, dEy s dé, (B.5)
H

B = [T ) UTT ) detl0)]dy 4 disdes (B.6)

G = /A T (U7 Wi # A&, de, dé, (B.7)

9%7 = /A ﬁL,kJ/‘?L,iJ?RJJf d¢; dé, dg,,, (B.8)
7



36 JJ.W. van der Vegt, Y. Xu | Journal of Computational Physics 224 (2007) 17-39

HLT = | NIV N 5 dE dEdE, (B.9)
7

w7 = ~ Nt N i) 7 48, dg (B.10)

vy = =, N e W e 5+ 48, A8, (B.11)

= % /% NIV ) - TV N ) 5 dg, dE, dé,, (B.12)

I = /A gy N 7 dé, dE, dE,,, (B.13)
3

SHT = /A NN 5 dE; dE dE,, (B.14)
7

NA(TTN N ) 7 dE, dE, dEy

T (Sl TTH ) - (T ) + 1)%

. / Wb N e e dE; dE, |
T (S Ll T T H S ) T )+ 1)

NATTN NI TN ) - (T TN )T 5 dE, dE, dE,,

: (B.15)

AT .
%ijkl (Cf/')—/f_ - o :
T (LT T (T T 1)

+/ JV&I:*V/V;@]:*I(J_T‘/VI?;SF*I) ) (J_TJVZ;H:%)J’J+ déjz dé./s
/+

iy (B.16)

, 8 o oy o oy b
(22;122]:15,,%17&/#(] T‘/‘/‘;{l:—l) : (J T‘/‘/;cf]:—l) + 1)

N e AN e f T TN e ) - (T TN ) e dE, dE,
5 (B.17)

2

A7 (Ly) = /
ijkl \5% ~. _ __
T (bl T T ) T ) 1)

a7 ;‘/\‘Tvi Q/At//‘-i,v,.]jﬂd-d~
@;%(4'7):/\ i =—1"" j§=1"F é/z 6]3 : (Blg)

T (sl T ) - T T ) 1)
with &, &, &, € {&), &, &3, &4} the three local coordinates defining the surface 7 and &), &), € {&, &5, &4} the
two local coordinates defining the surfaces # © or % . The surface Jacobian J 5 is defined as
OF 4 A OF y OF 4
og, 0&, 0,
and the surface Jacobians J - as
OF%, A OF%,
ac, 96,

Here, the jth component of the wedge product w =a Ab A c € R, with a,b,c € R* is computed by the rule
w/ = det(a, b, c, e;), with e, the jth basis vector in R*. Similarly, the space-time normal vector is computed as

Jr=

Jg/—i‘

¢, o¢;, SIS

OFy » OF4 r OFy
oz, Mg, 1 og,

n=s ,

where s = +1 is such that the normal vector is pointing outward of element .#". The space normal vector
ii € R® consists of the last three components of the space-time normal vector 7.
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Appendix C. Construction of linear system for the expansion coefficients in the Newton method

In this appendix we provide the details for the construction of the linear system for the expansion coeffi-
cients in the Newton method on an unstructured mesh.

The solution of the weak formulation (4.18) requires the approximation of the local lifting operator
Rs € R?, defined in (3.5). Instead of computing the local lifting operator separately for each face it is more
efficient to introduce the local lifting operator directly into the algebraic system for the expansion coefficients.
We briefly summarize this procedure. Since R» is only nonzero in the two elements #°; and " which are
connected to the face %, we have:

| Resld) et [ Roa(8) - ende =3 [ @it dume) -+ o) s, Voo € 2

(C.1)

We approximate the kth component of the lifting operator and test functions v;, vz, with k = 1,2, 3, as

(Rs k_ZR“ Ny (%), Vx €A, (C.2)

(x))k = Z":U?f'jk'/V.%/,j(x), Vx e A . (C.3)

If we introduce (C.2) and (C.3) into (C.1), and use the fact that this equation must be satisfied for arbi-

trary test functions v;, vk, then we obtain the following relations for the coefficients of the lifting operator
in (C.2):

s 1 -
Ry = 2 Z(Eﬁ/k/ bry+ Foi dry),
j=1
1 &
Rfk/ = B ( ﬁﬁ/d’L, +En,k ¢R,j)

1

with EX7 | FIR7 ¢ RV»>Nex3 defined as

~.
Il

[M,/]RR 0 ((gRR,/ =+ (gRRf) + %1';,57 (FRL% DRL T R /DRR /'

njk ink n jk ink

o Np _ Np
B = S DT, P i S ca)
i=1 i=1
The matrix .# is now constructed as follows:
(a) Initialize .# =0,
(b) M) =3, Vije{l,... N}VA €{l,....Ns},
_ N,
(C) [M"]LL - Z [M"]LL _ l ((gLL;.ﬁ + (gLL;.?) 4 l P dzl ZP(EL /DLL T LR T LR /
ij i 2 ij Jji 4 Nz njk ~ink n/k mk
FeT" k=1 n=1
_ N,
(d) [M"]LR - [M"]LR _ l ((gRL;.T‘ 4 (gLR;,?T) +l~/4 i Z‘(FRL /DLL F R /DLR /
i i 2 ij Jji 4 Nz njk ink njk ink
Fe7) k=1 n=1
_ N,
(e) [M ]RL - Z [M] 1 ((gLR/ (gRL:ﬂ?)'i_lN"i . (EL /DRL LR /'DRR/
i Lo i 2 Jji 4]77' - : njk ~ink n]k ink
FeF] =1 n=
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Nl .S
(& M) = 3 SIM T ) 30> G AT () - ()
FETy I=1 k=1
Vie{l,...,N,},Vje{l,...,N,},
: Np
(h) (M TS MT T T T 2 0 Tl b
FeFYy =

Vie{l,...,N,},¥je{l,...,N,},
(i) [MU}){/HV/ ANy Z {[MU})HN /+N/+¢/J}

FeF,
Vi, je{l,...,Ns}
with 77 = 1, + ny and d = dim(&). The righthand side vector F is constructed as follows:
Gy [F]) =0, Vie{l,...,N,}, V& €{l,....,Ny+ Ny},
() [F) = Y T Wie (LN

fieff’{
Ny Ny Ny
o F =Y ZZZ S AT ()
Jeff =1 j=1 k=l
Ny Ns Ny
Z D@L + G () b, Vie {1, N,
J=1 =1 k=1
NF NP
(m) R 3O QT DD e 9 +Z¢” s
FeF, j=1 =1
Vie{l,...,N}.

The construction of the matrix on a general unstructured mesh is now straightforward. First, we initialize
all entries to zero, followed by a loop over all elements. Next under (c) till (i) we loop over all faces, com-
pute the block matrix entries for the two elements with indices L and R which are connected to the face
7, and store these entries in the blocks [M]**. The same procedure then is followed for the righthand side.
This whole procedure does not depend on the chosen type of elements and is suitable for any unstructured
mesh.
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