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Abstract

A space–time discontinuous Galerkin (DG) finite element method for nonlinear water waves in an inviscid and incom-
pressible fluid is presented. The space–time DG method results in a conservative numerical discretization on time depen-
dent deforming meshes which follow the free surface evolution. The algorithm is higher order accurate, both in space and
time, and closely related to an arbitrary Lagrangian Eulerian (ALE) approach. A detailed derivation of the numerical algo-
rithm is given including an efficient procedure to solve the nonlinear algebraic equations resulting from the space–time dis-
cretization. Numerical examples are shown on a series of model problems to demonstrate the accuracy and capabilities of
the method.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In many applications the evolution of large amplitude water waves is dominated by gravity and the fluid
can be considered inviscid and incompressible, with the velocity field irrotational. This allows the introduction
of a potential function which satisfies the Laplace equation together with nonlinear boundary conditions at
the free surface. The position of the free surface is unknown and must be determined as part of the solution
process. The solution of free surface problems is, however, nontrivial and finite element methods provide an
excellent technique to solve these problems, in particular when one is interested in higher order accuracy. In
addition, they allow the use of efficient (iterative) sparse matrix solvers and can also be extended to more com-
plex physical models, e.g. flows with vorticity and/or viscosity.

An important aspect in the numerical discretization of water wave problems is that the motion of the
free surface requires that the computational mesh is continuously updated in order to follow the free sur-
face evolution. This requires that the finite element algorithm can efficiently and accurately deal with
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deforming elements. The main challenge in computing large amplitude water waves is that one needs a
highly accurate numerical scheme in order to simulate waves with minimal dispersion and dissipation
errors for a long period of time, while the nonlinearity and mesh deformation can easily introduce numer-
ical instabilities.

In this article we discuss a new space–time discontinuous Galerkin (DG) method for nonlinear water
wave problems. In this method basis functions are used which are discontinuous both in space and time
and the problem is directly considered in four dimensional space. This approach is well suited for unsteady
free surface problems since the numerical discretization remains conservative on time dependent deforming
meshes. The space–time DG discretization also results in an extremely local, element based discretization,
which is beneficial for parallel computing and maintaining high order accuracy on unstructured meshes.
In particular, space–time methods are well suited for hp-adaptation, which consists of local mesh refinement
and/or the adjustment of the polynomial order in individual elements. The main motivation for the algo-
rithm discussed in this article originates from the space–time DG techniques which we developed for com-
pressible flows [13,25,26,28] and the DG technique for linear free surface water waves [27]. These two
approaches are combined in this article and provide a new way to compute nonlinear water waves. More
general information about DG methods for elliptic and hyperbolic partial differential equations can be
found in [4,8–10].

The study of water waves has interested researchers over many years. Overviews of the theoretical analysis
of free surface waves can be found in for instance [15,20,30]. Finite element methods for nonlinear water wave
problems modeled by the Laplace equation have been developed in [7,16,17,29,31,32], and for the closely
related spectral element methods in [11,21,22]. A particularly important technique is provided by the so called
arbitrary Lagrangian Eulerian (ALE) method. The ALE technique provides more flexibility in choosing the
velocity of the mesh points in the mesh deformation algorithm, which only needs to be tangential to the free
surface and not necessarily equal to the fluid particle velocity. This makes it much easier to maintain a rea-
sonable mesh quality during the mesh deformation process. The ALE method is extensively used for many
applications requiring moving interfaces and boundaries and applied to free surface waves in for instance
[5,12,18,23,24]. The space–time discontinuous Galerkin finite element method discussed in this article also
belongs to the class of ALE schemes, but this is not immediately obvious. For an explanation of the link
between space–time and ALE methods see [19,26]. The space–time DG method has so far only been applied
to shallow water flows [1–3], including the wetting and drying of sand banks and beaches, but not to nonlinear
water waves modeled by the Laplace equation.

The article is organized as follows. In Section 2, we present the equations governing nonlinear water waves.
The geometry of the space–time domain, some necessary function spaces and trace operators are defined in
Section 3. In Section 4, we derive the weak formulation for the space–time discontinuous Galerkin finite ele-
ment discretization for nonlinear water waves. This formulation results in a large system of nonlinear alge-
braic equations which are solved with a Newton method. The main aspects of this algorithm are discussed
in Section 5, whereas the details are given in the appendix. Section 6 contains numerical results for linear
and nonlinear problems to demonstrate the accuracy and capabilities of the method. Finally, some concluding
remarks are drawn in Section 7.

2. Equations governing nonlinear water waves

Assume that the fluid is incompressible and inviscid, with the velocity field irrotational. The flow domain
XðtÞ � R3 at time t is bounded by a free surface CS, a solid boundary CN, and in certain cases also a periodic
boundary CP, such that CS [ CN [ CP ¼ oX. We assume that CS, CN and CP are nonoverlapping and Lipschitz
continuous, with CS a nonzero surface measure. The free surface is defined as
CS :¼ fðt; x; y; zÞ 2 R4jf ðt; x; y; zÞ ¼ 0g ð2:1Þ

with x; y; z the spatial coordinates in a standard Cartesian coordinate system. We assume that the flat water
surface is given by z ¼ 0, with the z-direction pointing upward from the flat water surface.

We introduce a velocity potential /ðt; x; y; zÞ, with u ¼ r/ the fluid velocity, wherer ¼ o
ox ;

o
oy ;

o
oz

� �T

denotes
the nabla-operator. We make the various parameters dimensionless by redefining them as
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/! H
ffiffiffiffiffiffiffiffi
Hgc

p
/; ðx; y; zÞ ! Hðx; y; zÞ; t!

ffiffiffiffiffi
H
gc

s
t; and u! u

ffiffiffiffiffiffiffiffi
Hgc

p
;

where gc is the gravitational constant and H the average water depth. The potential function / for nonlinear
water waves then must satisfy for t 2 ðt0; T Þ the Laplace equation:
�r � r/ ¼ 0 in XðtÞ: ð2:2Þ

In addition, we have the following boundary conditions. At solid surfaces we impose the boundary condition:
�n � r/ ¼ gNðtÞ at CNðtÞ ð2:3Þ

with �n 2 R3 the unit outward normal vector to oX and gN : CN ! R the prescribed normal velocity at CN.

The nonlinear free surface boundary conditions consist of the dynamic condition:
o/ðt; x; y; zÞ
ot

þ 1

2
r/ðt; x; y; zÞ � r/ðt; x; y; zÞ þ z ¼ 0; 8ðx; y; zÞ 2 CSðtÞ ð2:4Þ
and the kinematic condition:
of ðt; x; y; zÞ
ot

þr/ðt; x; y; zÞ � rf ðt; x; y; zÞ ¼ 0; 8ðx; y; zÞ 2 CSðtÞ: ð2:5Þ
For certain problems we also consider periodic boundary conditions at CP:
/ðt; xþ Lx; y þ Ly ; zÞ ¼ /ðt; x; y; zÞ: ð2:6Þ

Here Lx, Ly are the length of the periodic domain in the x- and y-direction, respectively. If the waves are not
overturning then we can introduce a wave height f, such that
f ðt; x; y; zÞ ¼ fðt; x; yÞ � z ¼ 0: ð2:7Þ

As initial conditions, we either start without any waves with /ðt0; x; y; zÞ ¼ fðt0; x; yÞ ¼ 0 and the waves are
generated by a wave maker; or, we start with an analytic wave field and /, f are known at initial time.

Note, if we change /! /þ c, with c 2 R an arbitrary constant, then the equations and boundary condi-
tions (2.2)–(2.6) remain unchanged. Hence, the potential / is determined up to an arbitrary constant.

3. Space–time domain, function spaces and traces

Since the domain boundaries oX are time dependent and need to be determined as part of the solution, it is
beneficial to introduce a space–time formulation. In a space–time formulation no distinction is made between
space and time and the discretization is obtained directly in R4. The key benefit of this approach is that the
numerical scheme will be exactly conservative on a moving and deforming mesh. Consider a domain
E � R4. A point x 2 R4 has coordinates ðt;�xÞ, with �x ¼ ðx; y; zÞ. The space–time domain boundary oE consists
of the hypersurfaces X0 :¼ fx 2 oEjt ¼ t0g, XT :¼ fx 2 oEjt ¼ T g and Q :¼ fx 2 oEjt0 < t < T g. The space–
time normal vector at oE is defined as n ¼ ðnt; �nÞT, with nt the temporal component and �n the spatial compo-
nent. The space–time boundary Q is further subdivided as Q ¼ CS [ CN [ ðCP � ðt0; T ÞÞ, with CS and CN

describing the evolution of the free surface and solid boundary in R4, respectively, such that
CSðtÞ ¼ CS \ ftg and CNðtÞ ¼ CN \ ftg.

The space–time domain is subdivided into a finite number of space–time slabs, which are constructed as
follows. Consider the time interval I ¼ ½t0; T �, partitioned by an ordered series of time levels
t0 < t1 < � � � < tN ¼ T . We denote the nth time interval In ¼ ðtn; tnþ1Þ, with I ¼ [nIn. A space–time slab is
now defined as the domain En :¼ E \ In, with boundaries XðtnÞ, Xðtnþ1Þ and Qn ¼ oEn n ðXðtnÞ [ Xðtnþ1ÞÞ.

In each space–time slab we introduce a finite element tessellation Tn
h with space–time elements K. Let

XhðtnÞ be subdivided into NT nonoverlapping shape regular spatial elements Kn, such that XhðtnÞ ! XðtnÞ
as h! 0, with h the radius of the smallest sphere containing all elements Kn

j ; j ¼ 1; . . . ;NT. At tnþ1 the spatial
elements Knþ1 are obtained by mapping the vertices of the elements Kn to their position at tnþ1. The space–time
elements K 2Tn

h are then obtained by interpolation in time between the elements Kn and Knþ1, such that
En

h ¼ [K2Tn
h
K! En as h! 0. More details about the specific element mappings will be given in Section 5.
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In the space–time slab we consider the following faces. Let Cn denote the union of the faces of all elements
K 2Tn

h, i.e. Cn ¼
S

K2Tn
h
oK, Cn

0 ¼ Cn n oEn
h the union of all interior faces, and Cn

Q :¼ Cn n ðXðtnÞ [ Xðtnþ1ÞÞ
the union of all interior faces and faces at Qh :¼ oEn

h n ðXðtnÞ [ XðT nþ1ÞÞ. We denote the set of all faces in
Tn

h by fFng, all interior faces by fFn
I g, all faces on Cn

N :¼ CN \ In by fFn
Ng, all faces on Cn

S :¼ CS \ In

by fFn
Sg and all faces on oEn

h by fFn
oEg. Note, faces at CP � ðt0; T Þ are considered interior faces, where

the periodicity relation (2.6) is used to connect the external part of CP to the interior of the domain X.
We define the finite element spaces V n

p and Rn
p associated with the tessellation Tn

h as
V n
p :¼ v 2 L2ðEn

hÞ vjK 2 PpðKÞ; 8K 2Tn
h

��� �
;

Rn
p :¼ r 2 ½L2ðEn

hÞ�
3 rjK 2 ½PpðKÞ�3; 8K 2Tn

h

���n o

with L2ðEn

hÞ the space of Lebesgue square integrable functions on En
h. The finite element space W n

p associated
with the free surface is defined as
W n
p :¼ v 2 L2ðCn

SÞ vjFn
S
2 PpðFn

SÞ; 8Fn
S � Cn

S

���n o
;

where L2ðCn
SÞ is the space of Lebesgue square integrable functions on Cn

S and Pp polynomials of order p.
Next, we define some trace operators to manipulate the numerical fluxes in the discontinuous Galerkin for-

mulation. For v 2 V n
p we define the average hvi and jump ½½v�� operators of v at an internal face F 2Fn

I as
follows:
hvi :¼ 1

2
ðvL þ vRÞ; ½½v�� :¼ vL�nL þ vR�nR ð3:1Þ
with vL :¼ vjoKL
and vR :¼ vjoKR

and KL, KR the elements connected to the face F 2Fn
I with outward space

normal vectors �nL and �nR, respectively. For q 2 Rn
p we similarly define qL and qR and set:
hqi :¼ 1

2
ðqL þ qRÞ; ½½q�� :¼ qL � �nL þ qR � �nR; at F 2Fn

I : ð3:2Þ
For F 2Fn
oE, the set of exterior boundary faces, each v 2 V n

p and q 2 Rn
p has a uniquely defined restriction on

F and we define:
½½v�� :¼ v�n; hqi :¼ q at F 2Fn
oE: ð3:3Þ
Since we do not require either of the quantities hvi or ½½q�� on boundary faces, we leave them undefined.
For the definition of the primal DG formulation we need to define the following lifting operator

R : ½L2ðCn
QÞ�

3 ! Rn
p:
Z

En
h

RðqÞ � rdx ¼
Z

Cn
Q

q � hrids; 8r 2 Rn
p ð3:4Þ
and for a face F 2Fn also the local lifting operator RF : ½L2ðFÞ�3 ! Rn
p:
Z

En
h

RFðqÞ � rdx ¼
Z
F

q � hrids; 8r 2 Rn
p: ð3:5Þ
Note, the local lifting operator RF is only nonzero in the two elements connected to the face F.

4. Space–time discontinuous Galerkin formulation

In this section we summarize the derivation of the space–time discontinuous Galerkin finite element discret-
ization for nonlinear water waves given by (2.2)–(2.6). We will follow the approach from Brezzi et al. [6],
which is analyzed in detail for the Laplace equation in [4] and for linear water waves in [27]. The key benefit
of this technique is that the DG formulation does not contain mesh dependent stabilization coefficients, as for
instance occur in the interior penalty method.

The novel ingredient in the finite element formulation discussed in this section is to incorporate the kine-
matic condition at the free surface (2.5) as a natural boundary condition in the finite element formulation. The



J.J.W. van der Vegt, Y. Xu / Journal of Computational Physics 224 (2007) 17–39 21
space–time finite element discretization then will automatically account for the mesh movement necessary to
follow the free surface waves. In order to accomplish this we need to establish a relation between the function f

describing the free surface (2.1), the wave height f and the space–time normal vector n. A straightforward cal-
culation using (2.7) shows that
n ¼ ðnt; �nÞ ¼
rf
jrf j ¼

of
ot ;rf
� 	T

jrf j ¼ 1

jrðf� zÞj
of
ot
;
of
ox
;
of
oy
;�1


 �T

ð4:1Þ
with $ the space–time nabla operator defined as r ¼ o
ot ;

o
ox ;

o
oy ;

o
oz

� �T

. We can rewrite the kinematic condition
(2.5) as
1

jrf j
of
ot
þr/ � rf

jrf j ¼ 0; ð4:2Þ
which implies using (4.1) that the space component of the normal velocity at the free surface CS is equal to
�n � r/ ¼ �1

jrðf� zÞj
of
ot
: ð4:3Þ
This relation can be used directly in the DG formulation of the Laplace equation. For the DG discretization of
the Laplace equation (2.2) we rewrite this equation into a first order system:
u ¼ r/; �r � u ¼ 0; in X; ð4:4Þ
where u represents the fluid velocity and / the potential. Multiplying (4.4) with arbitrary test functions r 2 Rn
p

and v 2 V n
p, integrating by parts with respect to �x over each element K 2Tn

h (twice for (4.5)), and summation
over all elements in Tn

h, we obtain for uh 2 Rn
p and /h 2 V n

p the relation:
Z
En

h

uh � rdx ¼
X

K2Tn
h

Z
K

rh/h � rdxþ
X
K2Tn

h

Z
oK

ð/̂K � /hÞr � �nK ds; ð4:5Þ

�
X

K2Tn
h

Z
K

ðrh � uhÞvdx ¼
X

K2Tn
h

Z
K

uh � rhvdx�
X

K2Tn
h

Z
oK

�nK � ûKvds ¼ 0 ð4:6Þ
for 8r 2 Rn
p and 8v 2 V n

p, where rh ¼ rjK for all K 2Th. Here, the numerical fluxes ûðuhÞ and brðrhuh; rhÞ
are introduced to account for the multivalued traces at C. The different discontinuous Galerkin formulations
proposed so far in the literature can all be derived by specifying these numerical fluxes. A full account is given
in [4]. In order to simplify the sums over the element boundaries oK, we use a slightly modified identity (3.3)
in [4], which states for qK 2 R3:
X

K2Tn
h

Z
oK

uKð0; qKÞ
T � nK ds ¼

X
K2Tn

h

Z
oK

uKqK � �nK ds; ð4:7Þ

¼
Z

Cn
Q

½½u�� � hqidsþ
Z

Cn
0

hui½½q�ds ð4:8Þ
and can be proved by a straightforward calculation using the fact that at XðtnÞ and Xðtnþ1Þ the space–time
normal vector n is equal to n ¼ ð�1; 0; 0; 0ÞT. Note, this relation also implies that there is no direct coupling
between the different space–time slabs. If we introduce (4.8) into (4.5) and (4.6) we obtain:
Z

En
h

uh � rdx ¼
Z
En

h

rh/h � rdxþ
Z

Cn
Q

½½/̂� /h�� � hridsþ
Z

Cn
0

h/̂� /hi½½r��ds; ð4:9ÞZ
En

h

uh � rhvdx�
Z

Cn
Q

½½v�� � hûids�
Z

Cn
0

hvi½½û��ds ¼ 0: ð4:10Þ
The numerical fluxes in the DG formulation from Brezzi et al. [6] are defined as
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/̂ ¼
h/hi on Cn

0;

/h on Cn
N [ Cn

S;

�
ð4:11Þ

û ¼ huhi � arð½½/h��Þ on Cn
0; ð4:12Þ

û ¼ u on Cn
N [ Cn

S; ð4:13Þ
where arðqÞ ¼ gFhRFðqÞi for F 2Fn
I , gF 2 Rþ a positive number. If we introduce the lifting operator (3.4)

into (4.9) and use (4.11) in the last contribution, then we obtain the following equation for uh, almost
everywhere:
uh ¼ rh/h þRð½½/̂� /h��Þ: ð4:14Þ

The weak formulation for the potential /h is now obtained by introducing the relation (4.14) for uh into
(4.10):

Find a /h 2 V n
p, such that for all v 2 V n

p, the following relation is satisfied:
Z
En

h

rh/h � rhvdxþ
Z

Cn
0

½½/̂� /h�� � hrhvids�
Z

Cn
0

½½v�� � hûids�
Z

Cn
0

hvi � ½½û��ds�
Z

Cn
N

vgN ds

þ
Z

Cn
S

v
jrhðfh � zÞj

ofh

ot
ds ¼ 0: ð4:15Þ
Here we used (3.4) to transform the integral with the lifting operator over En
h into an integral over Cn

0, since
½½/̂� /h�� ¼ 0 at Cn

N [ Cn
S. We also introduced the boundary condition (2.3) at the solid surfaces Cn

N and the
kinematic free surface boundary condition (4.3) at Cn

S. Using the definitions of the jump and average opera-
tors (3.1)–(3.3), the numerical fluxes (4.11)–(4.13), and the local lifting operator (3.5), we can transform the
following integrals over Cn

0 in (4.15) into
Z
Cn

0

½½b/ � /h�� � hrhvids ¼ �
Z

Cn
0

½½/h�� � hrhvidsZ
Cn

0

½½v�� � hûids ¼
Z

Cn
0

½½v�� � hrh/hidsþ
X
F2Fn

I

Z
En

h

RFð½½v��Þ �Rð½½/̂� /h��Þdx

�
X
F2Fn

I

gF

Z
En

h

RFð½½v��Þ �RFð½½/h��Þdx; ð4:16Þ
while the fourth integral in (4.15) is zero. The integrand in the second integral at the righthand of (4.16) in-
creases the stencil of the DG discretization for each element K beyond its nearest neighbors. Using (3.5), the
fact that ½½/̂� /h�� ¼ 0 at CN [ Cn

S, and the relation ½½/̂� /h�� ¼ �½½/h�� at Cn
0, we can approximate this con-

tribution as
X
F2Fn

I

Z
En

h

RFð½½v��Þ �Rð½½/̂� /h��Þdx ffi �nf

X
F2Fn

I

Z
En

h

RFð½½v��Þ �RFð½½/h��Þdx
with nf the number of faces of an element in the tessellation. This approximation has no effect on the accuracy
and stability of the space–time DG discretization, see [25], and the stencil now only contains contributions
from the element itself and its nearest neighbors.

The discretization of the dynamic boundary condition (2.4) can be straightforwardly obtained by multiply-
ing this equation with test functions v2 2 W n

p and integration over the free surface.
If we introduce now the bilinear form Bh : V n

p � V n
p ! R and the linear form Lh : V n

p ! R, which are defined
as
Bhðu; vÞ ¼
Z
En

h

rhu � rhvdx�
Z

Cn
0

ð½½u�� � hrhvi þ ½½v�� � hrhuiÞdsþ
X
F2Fn

I

ðgFþ nf Þ
Z
En

h

RFð½½u��Þ �RFð½½v��Þdx;

ð4:17Þ
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LhðvÞ ¼
Z

Cn
N

vgN ds;
then the weak formulation describing the evolution of nonlinear water waves can be formulated as
Find a ð/h; fhÞ 2 V n

p � W n
p, such that for all ðv1; v2Þ 2 V n

p � W n
p,
Bhð/h; v1Þ þ
1

jrhðfh � zÞj
ofh

ot
; v1


 �
Cn
S

þ fþh � f�h
jrhðfþh � zÞj

; vþ1


 �
CSðtþn Þ

¼ Lhðv1Þ; ð4:18Þ

o/h

ot
; v2


 �
Cn
S

þ 1

2
rh/h � rh/h; v2


 �
Cn
S

þ ð/þh � /�h ; v
þ
2 ÞCSðtþn Þ þ ðfh; v2ÞCn

S
¼ 0; ð4:19Þ
where ðu; vÞCn
S
¼
R

Cn
S

uvds denotes the L2-inner product at the free surface Cn
S, which is approximated as

z ¼ fhðt; x; yÞ. In addition, the following notation is used CSðtþn Þ ¼ lim�#0CSðtn þ �Þ, /�h ¼ lim�#0/hðtn � �Þ,
f�h ¼ lim�#0fhðtn � �Þ, with /�h and f�h the known potential and wave height from the space–time slab
En�1

h .

Remark 4.1. In (4.18) and (4.19) also weak coupling terms are added for the wave height and potential
function, which are inner products at CSðtþn Þ. These terms are necessary because the polynomial basis
functions in the space–time slab En

h are discontinuous in time and the solution would otherwise not be
connected to the previous space–time slab En�1

h . We can, however, not use standard weak coupling terms in
(4.18), as we did in (4.19), but we need to introduce the scaling factor 1

jrhðfþh �zÞj in order to balance the weak

coupling term with the contribution resulting from the time derivative of the wave height. Otherwise, for small
time steps or large wave heights, the solution would effectively be uncoupled from the solution in the previous
time slab.

Remark 4.2. The second contribution in (4.19) is related to the fluid velocity uh (see (4.4)) and rh/h should
actually be replaced by
uh ¼ rh/h �
X
F2Fn

I

RFð½½/h��Þ a:e: on Cn
S ð4:20Þ
using (4.14) and the numerical flux for /̂, given by (4.11). The use of this relation in (4.19) results in a coupling
of the dynamic boundary condition with the expansion coefficients in the neighboring elements and signifi-
cantly increases the complexity of the space–time discretization. When the computational mesh is, however,
fine enough the contribution ½½/h�� rapidly becomes negligible. Since our test cases did not show any beneficial
effect of adding the contribution of the lifting operator RFð½½/h��Þ to (4.19) we decided to omit this
contribution.
5. Algebraic system for the space–time discontinuous Galerkin discretization

The weak formulation for nonlinear water waves (4.18) and (4.19) is transformed into a system of nonlinear
algebraic equations by representing the potential function /h, the wave height fh and the test functions v1; v2 in
each space–time element by a polynomial expansion. For instance, the potential function /h 2 V n

p on hexahe-
dral elements using a tensor product basis can be expressed as
/hðt; x; y; zÞ ¼
XNp

j¼1

/K;jNK;jðt; x; y; zÞ; 8K 2Tn
h ð5:1Þ
with Np ¼ ðp þ 1Þ4 the number of polynomial coefficients in the DG discretization and p the polynomial order.
The wave height fhðxÞ is represented as
fhðt; x; yÞ ¼
XNs

j¼1

fS;jNS;jðt; x; yÞ; 8S 2Fn
S ð5:2Þ
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with Ns ¼ ðp þ 1Þ3 the number of expansion coefficients for the wave height. The basis functions NS;j and
NK;j are related as
NS;jðt; x; yÞ ¼NK;IðjÞðt; x; y; fðt; x; yÞÞ; for j ¼ 1; . . . ;Ns
with IðjÞ the index set with the vertices of an element K connected to the face S � CS. Similar expressions
are used for the test functions v1 and v2.

The space–time elements are hypercubes, but the procedure to derive the algebraic equations is essentially
independent of the type of element. The basis functions NK;j in each space–time element K are defined as
NK;jðt; x; y; zÞ ¼ cNj 	 F �1
K ðt; x; y; zÞ
using the isoparametric mapping:
F K : ½�1; 1�4 !K; ðt; x; y; zÞT ¼
XNp

j¼1

xK;j
cNjðn1; n2; n3; n4Þ ð5:3Þ
with xK;j ¼ ðtK;j; xK;j; yK;j; zK;jÞT 2 R4 the coordinates of the vertices of the space–time element and

n ¼ ðn1; n2; n3; n4ÞT 2 cK the local coordinates in the reference element cK :¼ ½�1; 1�4. The basis functions
NS;j in each face at the free surface Cn

S are defined as
NS;jðt; x; yÞ ¼ fNj 	 F �1
S ðn1; n2; n3Þ
using the isoparametric mapping:
F S :¼ F KjS : ½�1; 1�3 !S;

ðt; x; y; zÞT ¼
XNp

j¼1

xK;IðjÞcNIðjÞðn1; n2; n3; 1Þ

¼
XNs

j¼1

ðtK;IðjÞ; xK;IðjÞ; yK;IðjÞ; fS;jÞTfNjðn1; n2; n3Þ;

ð5:4Þ
where we assume that the local coordinate n4 ¼ 1 is at the free surface. The basis functions cNj and fNj are
defined as the tensorproducts of pth order polynomials in the local coordinates n. More details are provided in
Appendix A.

In order to define the vertices xK;j of the space–time elements in the isoparametric mapping (5.3) we need
p þ 1 spatial meshes at different time levels in the space–time slab En

h, each having the same connectivity. The
first ðp þ 1Þ3 vertices are the vertices �xn

K;j of KðtnÞ, the space–time element at t ¼ tn, hence xK;j ¼ ðtn;�xK;jÞT for

j ¼ 1; . . . ; ðp þ 1Þ3. The last ðp þ 1Þ3 vertices are the vertices �xnþ1
K;j of Kðtnþ1Þ, hence xnþ1

K;j ¼ ðtnþ1;�xnþ1
K;jÞ

T for

j ¼ Np � ðp þ 1Þ3 þ 1; . . . ;N p. When p P 2 then also vertices of the elements Kðtn þ ðm� 1ÞMt=ðp � 1ÞÞ, with
2 6 m 6 p � 1, are necessary for elements at the boundary. In the interior these vertices can be obtained using
linear interpolation, whereas at the domain boundary they must lie at the actual boundary surface.

For a concise description of the finite element discretization we introduce the following vectors
IK;F 2 RNp , matrices: AK;BK;CLR;F 2 RNp�Np , HK;F, Uþ;F, V�;F 2 RNs�Np , SK;F 2 RNs�Ns and tensors
DLR;F 2 RNp�Np�3, QK;F 2 RNs�Np�Np which are defined as
AK
ij :¼

Z
K

NK;iNK;j dx; BK
ij :¼

Z
K

rhNK;i � rhNK;j dx;

CLR;F
ij :¼

Z
F

NL;j�nL � rhNR;i ds; DLR;F
ijk :¼

Z
F

�nL;kNL;iNR;j ds;

HK;F
ij :¼

Z
F

NS;i
oNK;j

ot
ds; IK;F

i :¼
Z
F

gNNK;i ds;

Uþ;F
ij :¼

Z
Fðtþn Þ

NS;iðtþn ÞNK;jðtþn Þds; V�;F
ij :¼

Z
Fðtþn Þ

NS;iðtþn ÞNK;jðt�n Þds;
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SK;F
ij :¼

Z
F

NS;iNS;j ds; QK;F
ijl :¼ 1

2

Z
F

NS;irNK;j � rNK;l ds: ð5:5Þ
Here, K is the index of the elements in the tessellation Tn
h, which contains NT elements, and L, R are the

element indices of the two elements connected to each side of the face with index F. The number of free sur-
face faces is denoted as NS. In addition, we need to define PK;F, Y�;F 2 RNp�Ns and X�;F, RK;F 2
RNp�N s�Ns�Ns , which are related to the free surface contribution:
PK;F
ij ðfhÞ :¼

Z
F

1

jrhðfh � zÞjNK;i
oNS;j

ot
dsþ

Z
Fðtþn Þ

1

jrhðfþh � zÞj
NK;iðtþn ÞNS;jðtþn Þds;

Y�;F
ij ðfhÞ :¼

Z
Fðtþn Þ

1

jrhðfþh � zÞj
NK;iðtþn ÞNS;jðt�n Þds;

RK;F
ijkl ðfhÞ :¼

Z
F

1

jrhðfh � zÞj3
NK;i

oNS;j

ot
ðrSNS;k � rSNS;lÞds

þ
Z
Fðtþn Þ

1

jrhðfþh � zÞj3
NK;iðtþn ÞNS;jðtþn ÞðrSNS;kðtþn Þ � rSNS;lðtþn ÞÞds;

X�;F
ijkl ðfhÞ :¼

Z
Fðtþn Þ

1

jrhðfþh � zÞj3
NK;iðtþn ÞNS;jðt�n ÞðrSNS;kðtþn Þ � rSNS;lðtþn ÞÞds

ð5:6Þ
with rS ¼ ð oot ;
o
ox ;

o
oy Þ

T. The integrals are computed by transforming them to the reference element cK or the

reference face cF :¼ ½�1; 1�3, respectively, using the mappings (5.3) and (5.4). More details are provided in
Appendix B.

The algebraic equations for the expansion coefficients /K;j and fS;j of the potential and wave height in the
space–time slab En

h, respectively, are obtained by introducing the polynomial representations for /h and fh and
the test functions v1; v2, defined in (5.1) and (5.2), into (4.18) and (4.19) and using the fact that these equations
must be satisfied for arbitrary test functions.

The algebraic equations for the discontinuous Galerkin discretization of (4.18) in the space–time slab En
h

can be expressed symbolically as
L11U
n þ QðZnÞ � X ðZn;Zn�1Þ ¼ Lh ð5:7Þ
with Un 2 RNpNT and Zn 2 RNsNS the expansion coefficients for the potential and wave height, respectively.
The construction of the matrix L11 2 RNpNT�NpNT is discussed in Appendix C. The nonlinear free surface con-
tribution Q, X 2 RNpNT are defined as
QiðZÞ ¼
XNs

j¼1

fS;j

Z
F

NK;i
oNS;j

ot dsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNs
p¼1

PNs
q¼1fS;pfS;qrSNS;p � rSNS;q þ 1

q
0B@

þ
Z
Fðtþn Þ

NK;iðtþn ÞNS;jðtþn ÞdsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNs
p¼1

PNs
q¼1fS;pfS;qrSNS;pðtþn Þ � rSNS;qðtþn Þ þ 1

q
1CA
and
X iðZ;Zn�1Þ ¼
XNs

j¼1

fn�1
S;j

Z
Fðtþn Þ

NK;iðtþn ÞNS;jðt�n ÞdsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNs
p¼1

PNs
q¼1fS;pfS;qrSNS;pðtþn Þ � rSNS;qðtþn Þ þ 1

q :
The nonlinear algebraic system (5.7) is solved with a Newton method. For this purpose we linearize Q and X

around the mth Newton iterate ZðmÞ:
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QiðZÞ ffi QiðZðmÞÞ þ
XNs

l¼1

oQi

oZl
ðZl �Z

ðmÞ
l Þ;

X iðZ;Zn�1Þ ffi X iðZðmÞ;Zn�1Þ þ
XNs

l¼1

oX i

oZl
ðZl �Z

ðmÞ
l Þ
with
oQi

oZl
¼ PK;F

il ðZðmÞÞ �
XNs

j¼1

XNs

k¼1

Z
ðmÞ
j Z

ðmÞ
k RK;F

ijkl ðZðmÞÞ;

oX i

oZl
¼ �

XNs

j¼1

XNs

k¼1

Zn�1
j Z

ðmÞ
k X�;F

ijkl ðZðmÞÞ:
If we introduce the matrix
HðZn;ðmÞ;Zn�1Þ :¼ oQðZn;ðmÞÞ
oZ

� oX ðZn;ðmÞ;Zn�1Þ
oZ

2 RNpNT�NsNS ;
then we can write the linearized form of (5.7) as
L11U
n þHðZn;ðmÞ;Zn�1ÞZn;ðmþ1Þ ¼ HðZn;ðmÞ;Zn�1ÞZn;ðmÞ � QðZn;ðmÞÞ þ X ðZn;ðmÞ;Zn�1Þ þ Lh: ð5:8Þ
Using the element integrals defined in (5.5), the algebraic equations for the dynamic condition at the free sur-
face (4.19) can be expressed in each element K connected to the free surface CS as
XNp

j¼1

/n
K;jH

K;F
ij þ

XNp

j¼1

/n
K;jU

þ;F
ij þ

XNp

j¼1

XNp

l¼1

/n
K;j/

n
K;lQ

K;F
ijl þ

XNs

j¼1

fn
S;jS

K;F
ij ¼

XNp

j¼1

/n�1
K;jV

�;F
ij :
These nonlinear equations are also solved with a Newton method. Assume /ðmÞK;j is the mth iterate for the
expansion coefficients /K;j in element K in the Newton method, then the next approximation is found by
solving the linear system:
XNp

j¼1

HK;F
ij þUþ;F

ij þ 2
XNp

l¼1

/n;ðmÞ
K;l Q

K;F
ijl

 !
/n;ðmþ1Þ

K;j þ
XNs

j¼1

fn
S;jS

K;F
ij

¼
XNp

j¼1

XNp

l¼1

/n;ðmÞ
K;j /n;ðmÞ

K;l Q
K;F
ijl þ

XNp

j¼1

/n�1
K;jV

�;F
ij 8F 2FS: ð5:9Þ
The coupled algebraic systems in the Newton procedure (5.8) and (5.9) can be written in matrix form as
MWn;ðmþ1Þ ¼ F ðWn;ðmÞ; Wn�1Þ ð5:10Þ

with M 2 RmT�mT , Wn;ðmþ1Þ, Wn�1 2 RmT , F 2 RmT and mT ¼ N pNT þ NsNS. The linear system (5.10) can be
represented as
L11 L12ðZn;ðmÞ;Zn�1Þ
L21ðUn;ðmÞÞ L22

 !
Un;ðmþ1Þ

Zn;ðmþ1Þ

 !
¼ F 1ðZn;ðmÞ;Zn�1Þ

F 2ðUn;ðmÞ; Un�1Þ

 !
with U 2 RNpNT and Z 2 RNsNS the expansion coefficients for the potential and wave height, respectively. The

matrices Lij have dimension L11 2 RNpNT�NpNT ; L12 2 RNpNT�NsNS ; L21 2 RNsNS�NpNT ; L22 2 RNsNS�NsNS . Note,
L12 only depends on the expansion coefficients for the wave height, while L21 only depends on the expansion
coefficients for the potential. As long as the space–time mesh is not deformed the other contributions in the
matrix M therefore do not have to be updated. The details of the matrix construction for a general unstruc-
tured mesh, which requires some care in the DG algorithm, are given in Appendix C.

The computation of the wave field in a space–time slab now proceeds as follows. Given the mesh at t ¼ tn

we construct a space–time mesh by translating the mesh at t ¼ tn to the new time level tnþ1. On this space–time
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mesh we perform a number of Newton iterations, which consist of solving (5.10), updating L12 and F1 with the
new coefficients Zn;ðmþ1Þ and L21 and F2 with the new coefficients Un;ðmþ1Þ, until a specified tolerance in
jUn;ðmþ1Þ � Un;ðmÞj and jZn;ðmþ1Þ �Zn;ðmÞj is obtained. Next, the free surface is updated using the computed wave
height coefficients Zn;ðmþ1Þ and the interior mesh are moved to maintain a consistent mesh without grid folding
and with a proper distribution of the mesh resolution. Next, a new potential and wave height is computed on
the updated mesh. This process is continued until the difference in wave height and potential on two consec-
utive meshes is within a prescribed tolerance.

The mesh is deformed by the area-orthogonality (AO) grid generator in [14], which we summarize for two-
dimensional problems. The AO method is based on the solution of the following pair of partial differential
equations for the mapping functions x and y:
g22xnn þ 4xnxgxng þ g11xgg þ 2ðxnyg þ xgynÞyng ¼ 0;

g22ynn þ 4ynygyng þ g11ygg þ 2ðxnyg þ xgynÞxng ¼ 0
with
g11 ¼ x2
n þ y2

n;

g22 ¼ x2
g þ y2

g:
These equations are generally solved as a Dirichlet problem with boundary values obtained from the physical
boundaries of the free surface and, if present, the prescribed motion of a wave maker. The AO method permits
direct control over geometric grid qualities, such as smoothness, area and ‘‘orthogonality’’. The mesh gener-
ation equations are discretized by a finite difference method and solved with the successive overrelaxation
method (SOR).

The linear system (5.10) is nonsingular due to the stabilization terms in the DG discretization, but it has a
large condition number because one of the eigenvalues is close to zero. This does not result in a serious loss of
accuracy when the zero mean condition

R
X /h dx ¼ 0 is imposed after the linear system has been solved. This

ensures that a unique solution is obtained for the equation of the potential (2.2)–(2.6). The zero mean condi-
tion is imposed by correcting the numerical solution after each Newton iteration step as /h  /h � �/h, with
�/h ¼ 1

jXj
R

X /h dx, after which the new expansion coefficients of /h are obtained in each element K using an
L2-projection onto the basis functions NK;j.
6. Numerical examples

In this section we provide numerical examples to illustrate the accuracy and capabilities of the space–time
DG method for linear and nonlinear water waves. In all examples, the figures present the solution obtained
with a particular choice of the mesh. We have verified with the aid of successive mesh refinements, that in
all cases, the results shown are numerically convergent.

Example 6.1. Accuracy test for linear free surface waves.
The nonlinear space–time DG (STDG) method also works for linear free surface waves. We compare the

accuracy of the STDG algorithm therefore also with the DG algorithm for linear waves discussed in [27].
Linear free surface waves satisfy the equations
� D/ ¼ 0; in X ¼ ½0; 2� � ½�1; 0�;
n � r/ ¼ 0; at z ¼ �1

ð6:1Þ
with linear free-surface boundary conditions at CS
o/
ot
þ f ¼ 0; ð6:2Þ

of
ot
� o/

oz
¼ 0 ð6:3Þ
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and periodic boundary conditions at x ¼ 0 and x ¼ 2. The analytic solution of this problem is given by
Table
Accura
waves

p1

p2
/ ¼ /0 coshðkðzþ 1ÞÞ cosðxt � kxÞ;

where /0 denotes the amplitude of the velocity potential, k the wave number and x the frequency of the oscil-
lations, which satisfies the dispersion relation
x2 ¼ k tanhðkÞ:

The initial conditions for the free surface potential and wave height at z ¼ 0 are
/ ¼ /0 coshðkÞ cosðkxÞ;
f ¼ /0 coshðkÞ sinðkxÞ:
In Tables 6.1 and 6.2 we present the error in the wave height and potential at time t ¼ 2:5 with /0 ¼ 0:1 in the
L2 and L1-norm for the STDG method and the DG method discussed in [27]. For the STDG method, the
basis functions have polynomial degrees p ¼ 1 and p ¼ 2, both in space and time. Also, the order of accuracy
for the different polynomial degrees is given, which indicates that the STDG method has an order of accuracy
Oðhpþ1 þ Mtpþ1Þ and shows superconvergence in the L2-norm. For the DG method in [27], the basis functions
also have polynomial degrees p ¼ 1 and p ¼ 2 in space, but the time discretization is only second order accu-
rate. That is the reason why we obtain second order accuracy for p ¼ 2 polynomials for this DG method. We
can also compare the error levels, which are significantly smaller for the STDG method than the DG method.

Example 6.2. Linear waves generated by a wave maker.
Next, we consider linear waves generated by a wave maker and compare them with the results obtained in

[27]. The domain is X ¼ ½0; 10� � ½�1; 0�. The time harmonic normal velocity profile at the wave maker, which
is positioned at x ¼ 0, is linear in the vertical direction, starting from zero at the bottom and with an amplitude
of 0.05 at the free surface. The frequency of the time-harmonic motion is xw ¼ 2. Homogeneous Neumann
boundary conditions representing no flow through the boundary surface are assumed at the bottom z ¼ �1
and at the end of the domain at x ¼ 10. The initial free-surface height and velocity potential are zero. All
simulations are done on a mesh of 80� 20 elements, where the mesh points have a random displacement with
a maximum of 30% of the edge length.

The wave profiles in the domain at T ¼ 20 and T ¼ 50 are presented in Figs. 6.1 and 6.2. The results are
compared with the linear DG algorithm discussed in [27] and show an excellent agreement at T ¼ 20 both for
polynomial order p ¼ 1 and 2.

At T ¼ 50, the STDG solution is more accurate for p ¼ 1 than the linear DG method. This is also visible in
the results in Tables 6.1 and 6.2. The results for p ¼ 2 for both methods are still very close, but the STDG
method will be more accurate for longer simulation times since this scheme is third order accurate in time,
whereas the linear DG method is only second order accurate in time.
6.1
cy and order of convergence of the wave height computed with the STDG and the linear DG method [27] for linear free surface

nx� ny STDG DG

L2 error Order L1 error Order L2 error Order L1 error Order

6� 6 3.62e�03 – 3.09e�02 – 6.56e�02 – 7.74e�02 –
12� 12 6.43e�04 2.49 7.74e�03 2.00 1.74e�02 1.92 1.76e�02 2.14
24� 24 1.14e�04 2.49 1.99e�03 1.96 4.42e�03 1.97 4.70e�03 1.90
48� 48 2.01e�05 2.51 4.86e�04 2.03 1.09e�03 2.02 1.16e�03 2.02

6� 6 3.38e�04 – 4.26e�03 – 8.03e�03 – 8.83e�03 –
12� 12 4.28e�05 2.98 8.05e�04 2.40 1.44e�03 2.48 2.36e�03 1.90
24� 24 7.43e�06 2.53 1.99e�04 2.01 4.11e�04 1.80 6.74e�04 1.81
48� 48 6.78e�07 3.45 2.53e�05 2.98 1.07e�04 1.94 1.47e�04 2.20



Table 6.2
Accuracy and order of convergence of the potential computed with the STDG and the linear DG method for linear free surface waves

nx� ny STDG DG

L2 error Order L1 error Order L2 error Order L1 error Order

p1 6� 6 1.48e�03 – 1.15e�02 – 2.35e�02 – 2.37e�02 –
12� 12 2.64e�04 2.49 3.07e�03 1.90 6.76e�03 1.80 6.13e�03 1.95
24� 24 4.68e�05 2.50 7.77e�04 1.98 1.72e�03 1.97 1.77e�03 1.79
48� 48 8.29e�06 2.50 1.95e�04 2.00 4.32e�04 2.00 4.52e�04 1.97

6� 6 5.55e�05 – 6.17e�04 – 3.27e�03 – 3.42e�03 –
p2 12� 12 5.29e�06 3.39 7.71e�05 3.00 5.47e�04 2.58 7.05e�04 2.28

24� 24 4.20e�07 3.65 7.91e�06 3.29 1.37e�04 1.99 1.68e�04 2.07
48� 48 3.42e�08 3.62 8.43e�07 3.23 3.40e�05 2.01 3.71e�05 2.17
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Fig. 6.1. Wave profile at T ¼ 20 generated by a wave maker at x ¼ 0 (randomly disturbed mesh 80� 20 points, wave maker amplitude
0.05) for polynomial basis functions of degree p ¼ 1 and 2 using the STDG method and the linear DG method in [27].
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Example 6.3. Evolution of a slowly modulated wave packet.
In this example we consider nonlinear water waves governed by (2.2)–(2.7) with periodic boundary

conditions in the x-direction. We consider the same case as in [11] to compute the evolution of a slowly
modulated wave packet
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Fig. 6.2. Wave profile at T ¼ 50 generated by a wave maker at x ¼ 0 (randomly disturbed mesh 80� 20 points, wave maker amplitude
0.05) for polynomial basis functions of degree p ¼ 1 and 2 using the STDG method and the linear DG method in [27].
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f0ðxÞ ¼ 0:01 exp � 3

4
ðx� pÞ2


 �
cosð10xÞ ð6:4Þ
with zero initial velocity potential in the domain X ¼ ½0; 2p� � ½�1; 0�.
In Fig. 6.3, the wave profiles at T ¼ 5 and T ¼ 10, computed with the STDG method on different meshes

for polynomial orders p ¼ 1 and p ¼ 2, respectively, and initial condition (6.4) are presented. The results for
p ¼ 2 on the coarser mesh compare well with the p ¼ 1 results on the fine mesh. The numerical results
converge for different meshes and polynomial orders. The long time evolution of the wave profiles can be
compared with Fig. 1a in [11] and show very similar wave interaction phenomena.

Example 6.4. Comparison with exact nonlinear wave solution.
In this example we consider the time domain problem discussed in [31] in a rectangular container with

depth d ¼ 1 and width b ¼ 2. The nonlinear free surface waves satisfy (2.2)–(2.7) with reflecting boundary
conditions. The initial condition is
f0ðxÞ ¼ a cosð2px=bÞ; ð6:5Þ

where a is the amplitude. In [31], numerical results and a second order analytic solution for this problem are
presented.

The space–time computations are conducted for the polynomial order p ¼ 1 on a mesh with 40� 10
elements, and for p ¼ 2 on a mesh with 20� 10 elements. In Fig. 6.4 the wave elevation f/a at the midpoint in



t

ζ/α

0 5 10 15 20
-1

-0.5

0

0.5

1

1.5
Analytic(2ndorder)
STDG, P1, 40x10
STDG, P2, 20x10
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a ¼ 0:05.

32 J.J.W. van der Vegt, Y. Xu / Journal of Computational Physics 224 (2007) 17–39



J.J.W. van der Vegt, Y. Xu / Journal of Computational Physics 224 (2007) 17–39 33
the x-direction (x ¼ b=2) is given. The STDG results and the second order analytic solution compare well for
the different polynomial orders.

Example 6.5. Nonlinear free-surface waves in a basin with a bump.
In this example we consider the same problem which is discussed in Example 6.4, but now in a basin with a

bump. The aim of these computations is to investigate the effect of large mesh deformation on the accuracy. In
Fig. 6.6 the wave elevation f/a at the midpoint in the x-direction (x ¼ b=2) is given. We also show the mesh
deformation at time T ¼ 0 and T ¼ 20 in Fig. 6.5. Even with the relative coarse meshes, the particle history
compare pretty well with the flat bottom case in Example 6.4

Example 6.6. Nonlinear free-surface waves generated by a wave maker.
Next, we consider nonlinear free-surface waves generated by a wave maker. The domain is

X ¼ ½0; 4� � ½�1; 0�. The frequency of the time-harmonic motion is xw ¼ 2. Homogeneous Neumann
boundary conditions are assumed at the bottom z ¼ �1 and at the end of the domain at x ¼ 4. The initial free-
surface height and velocity potential are zero. At each time step the mesh is deformed to account for the free
surface motion.
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The wave profiles in the domain at T ¼ 7:5 and T ¼ 20 are presented in Fig. 6.7 and show the typical
increase in wave height when the wave is reflected from the wall opposite to the wave maker. The wave profiles
compare well for different meshes and different polynomial order.
7. Concluding remarks

In this article we have developed a space–time discontinuous Galerkin method for nonlinear water
waves. The key features of the method are that the DG discretization is done in four dimensional
space, with time as the fourth dimension, and the use of test and trial functions which are discontin-
uous both in space and time. This technique results in a higher order accurate conservative numerical
scheme on time dependent deforming meshes which are necessary to follow the free surface evolution.
A novel ingredient in the finite element formulation is the incorporation of the kinematic boundary
condition directly into the weak formulation. The space–time discretization then will automatically
account for the mesh movement induced by the wave motion. An efficient solution technique for the
algebraic equations resulting from the space–time discretization is obtained using a Newton method.
This results in a rapidly converging iterative process which can be combined with efficient (iterative)
sparse matrix techniques to solve the resulting linear system. The mesh deformation is controlled by
solving elliptic partial differential equations for the position of the mesh points. This technique results
in a high quality mesh which follows the evolution of the free surface without locally resulting in
meshes which are too coarse or fine. Numerical examples include linear and nonlinear free-surface wave
simulations and illustrate the accuracy and capabilities of the method by comparing the results to
known solutions and verifying dependence of the error on the mesh size. The application to three
dimensional problems is in progress and will aim at the construction of a numerical wave tank which
can simulate large amplitude waves in a model basin. The main purpose of these activities is to provide
accurate information about choosing the proper set up of model experiments and the optimal control
of wave makers.
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Appendix A. Basis functions

The following functions are used to construct the tensor product basis functions on hexahedra and
hypercubes:
p ¼ 1 : bN1ðnÞ ¼
1

2
ð1� nÞ

bN2ðnÞ ¼
1

2
ð1þ nÞ

p ¼ 2 : bN1ðnÞ ¼ �
1

2
nð1� nÞbN2ðnÞ ¼ ð1� nÞð1þ nÞ

bN3ðnÞ ¼
1

2
nð1þ nÞ:
The tensor product basis functions fNj on the reference element ½�1; 1�3 are then defined as
fNjðn1; n2; n3Þ ¼ bNi1ðn1ÞbNi2ðn2ÞbNi3ðn3Þ

with j ¼ i1 þ ði2 � 1Þðp þ 1Þ þ ði3 � 1Þðp þ 1Þ2 for i1; i2; i3 2 f1; 2; . . . ; p þ 1g.
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The tensor product basis functions cNj on the reference element ½�1; 1�4 are defined as
cNjðn1; n2; n3; n4Þ ¼ bNi1ðn1ÞbNi2ðn2ÞbNi3ðn3ÞbNi4ðn4Þ

with j ¼ i1 þ ði2 � 1Þðp þ 1Þ þ ði3 � 1Þðp þ 1Þ2 þ ði4 � 1Þðp þ 1Þ3 for i1; i2; i3; i4 2 f1; 2; . . . ; p þ 1g.

Appendix B. Element and face integrals

Given the mapping F K, defined in (5.3) we can transform the integrals in the DG formulation into integrals
over the reference element cK ¼ ½�1; 1�4 or the reference face cF ¼ ½�1; 1�3. These integrals can then be
straightforwardly evaluated with a Gaussian quadrature rule. For this purpose we define the Jacobian matrix
J 2 R4�4 as 0 1
J ¼ oF K

oðn1; n2; n3; n4Þ
¼

ot
on1

ot
on2

ot
on3

ot
on4

ox
on1

ox
on2

ox
on3

ox
on4

oy
on1

oy
on2

oy
on3

oy
on4

oz
on1

oz
on2

oz
on3

oz
on4

BBBBB@
CCCCCA ðB:1Þ
with ðn1; n2; n3; n4ÞT 2 ½�1; 1�4. The inverse of J is equal to
J�1 ¼

on1

ot
on1

ox
on1

oy
on1

oz

on2

ot
on2

ox
on2

oy
on2

oz

on3

ot
on3

ox
on3

oy
on3

oz

on4

ot
on4

ox
on4

oy
on4

oz

0BBBBB@

1CCCCCA: ðB:2Þ
We denote the first column of J�1 as J�1
t 2 R4�1 and the last three columns of J�1 as J�1

�x 2 R4�3 and use J�T

for the transposed of the inverse of J�1 with similar relations for the other Jacobian matrices. The nabla oper-

ator on the reference element cK is defined as br ¼ o
on1
; o

on2
; o

on3
; o

on4

� �T

and on the reference face cF aser ¼ o
on1
; o

on2
; o

on3

� �T

.

The Jacobian matrix eJ 2 R3�3 is defined as0 1

eJ ¼ oF S

oðn1; n2; n3Þ
¼

ot
on1

ot
on2

ot
on3

ox
on1

ox
on2

ox
on3

oy
on1

oy
on2

oy
on3

BB@ CCA ðB:3Þ
with ðn1; n2; n3ÞT 2 ½�1; 1�3. The inverse of eJ is equal to
eJ �1 ¼

on1

ot
on1

ox
on1

oy

on2

ot
on2

ox
on2

oy

on3

ot
on3

ox
on3

oy

0BB@
1CCA: ðB:4Þ
We denote the first column of eJ �1 as eJ �1
t 2 R3�1.

The integrals defined in (5.5) and (5.6) can now be expressed as
AK
ij ¼

Z
bK cNK;i

cNK;jj detðJÞjdn1 dn2 dn3 dn4; ðB:5Þ

BK
ij ¼

Z
bKðJ�T

�x
brcNK;iÞ � ðJ�T

�x
brcNK;jÞjdetðJÞjdn1 dn2 dn3 dn4; ðB:6Þ

CLR;F
ij ¼

Z
bF cNL;j�nL � ðJ�T

�x
brcNR;iÞJF dni1 dni2 dni3 ; ðB:7Þ

DLR;F
ijk ¼

Z
bF �nL;k

cNL;i
cNR;jJF dni1 dni2 dni3 ; ðB:8Þ
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HK;F
ij ¼

Z
bF fNiJ�T

t
brcNjJF dni1 dni2 dni3 ; ðB:9Þ

Uþ;F
ij ¼

Z
bFþ fNþ

i;n1¼�1
cNþ

j;n1¼�1JFþ dnj2
dnj3

; ðB:10Þ

V�;F
ij ¼

Z
bFþ fNþ

i;n1¼�1
cN�

j;n1¼1JFþ dnj2
dnj3

; ðB:11Þ

QK
ijl ¼

1

2

Z
bF fNiðJ�T

�x
brcNjÞ � ðJ�T

�x
brcNlÞJF dni1 dni2 dni3 ; ðB:12Þ

IK;F
i ¼

Z
bF gN

cNiJF dni1 dni2 dni3 ; ðB:13Þ

SK;F
ij ¼

Z
bF fNi

fNjJF dni1 dni2 dni3 ; ðB:14Þ

PK;F
ij ðfSÞ ¼

Z
bF cNiðeJ �T

t
erfNjÞJF dni1 dni2 dni3PNs

p¼1

PNs
q¼1fS;pfS;qðeJ �TfNpÞ � ðeJ �TfNqÞ þ 1

� �1
2

þ
Z
bFþ

cNþ
i;n1¼�1

fNþ
j;n1¼�1JFþ dnj2

dnj3PNs
p¼1

PNs
q¼1fS;pfS;qðeJ �TfNþ

p;n1¼�1Þ � ðeJ �TfNþ
q;n1¼�1Þ þ 1

� �1
2

; ðB:15Þ

RK;F
ijkl ðfSÞ ¼

Z
bF cNiðeJ �T

t
erfNjÞðeJ �TfNkÞ � ðeJ �TfNlÞJF dni1 dni2 dni3PNs

p¼1

PNs
q¼1fS;pfS;qðeJ �TfNpÞ � ðeJ �TfNqÞ þ 1

� �3
2

þ
Z
bFþ

cNþ
i;n1¼�1

fNþ
j;n1¼�1ðeJ �TfNþ

k;n1¼�1Þ � ðeJ �TfNþ
l;n1¼�1ÞJFþ dnj2

dnj3PNs
p¼1

PNs
q¼1fS;pfS;qðeJ �TfNþ

p;n1¼�1Þ � ðeJ �TfNþ
q;n1¼�1Þ þ 1

� �3
2

; ðB:16Þ

X�;F
ijkl ðfSÞ ¼

Z
bFþ

cNþ
i;n1¼�1

fN�
j;n1¼1ðeJ �TfNþ

k;n1¼�1Þ � ðeJ �TfNþ
l;n1¼�1ÞJFþ dnj2

dnj3PNs
p¼1

PNs
q¼1fS;pfS;qðeJ �TfNþ

p;n1¼�1Þ � ðeJ �TfNþ
q;n1¼�1Þ þ 1

� �3
2

; ðB:17Þ

Y�;F
ij ðfSÞ ¼

Z
bFþ

cNþ
i;n1¼�1

fN�
j;n1¼1JFþ dnj2

dnj3PNs
p¼1

PNs
q¼1fS;pfS;qðeJ �TfNþ

p;n1¼�1Þ � ðeJ �TfNþ
q;n1¼�1Þ þ 1

� �1
2

ðB:18Þ
with ni1 ; ni2 ; ni3 2 fn1; n2; n3; n4g the three local coordinates defining the surface F and nj2
; nj3
2 fn2; n3; n4g the

two local coordinates defining the surfaces Fþ or F�. The surface Jacobian JF is defined as
JF ¼
oF K

oni1

^ oF K

oni2

^ oF K

oni3

���� ����

and the surface Jacobians JF� as
JF� ¼
oF �K
onj2

^ oF �K
onj3

���� ����:

Here, the jth component of the wedge product w ¼ a ^ b ^ c 2 R4, with a; b; c 2 R4 is computed by the rule
wj ¼ detða; b; c; ejÞ, with ej the jth basis vector in R4. Similarly, the space–time normal vector is computed as
n ¼ s

oF K

oni1
^ oF K

oni2
^ oF K

oni3

oF K

oni1
^ oF K

oni2
^ oF K

oni3

��� ��� ;

where s ¼ �1 is such that the normal vector is pointing outward of element K. The space normal vector
�n 2 R3 consists of the last three components of the space–time normal vector n.
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Appendix C. Construction of linear system for the expansion coefficients in the Newton method

In this appendix we provide the details for the construction of the linear system for the expansion coeffi-
cients in the Newton method on an unstructured mesh.

The solution of the weak formulation (4.18) requires the approximation of the local lifting operator
RF 2 R3, defined in (3.5). Instead of computing the local lifting operator separately for each face it is more
efficient to introduce the local lifting operator directly into the algebraic system for the expansion coefficients.
We briefly summarize this procedure. Since RF is only nonzero in the two elements KL and KR which are
connected to the face F, we have:
Z

KL

RF;Lð½½/h��Þ � vL dxþ
Z
KR

RF;Rð½½/h��Þ � vR dx ¼ 1

2

Z
F

ð/L;h�nL þ /R;h�nRÞ � ðvL þ vRÞds; 8vL; vR 2 Rp
h:

ðC:1Þ

We approximate the kth component of the lifting operator and test functions vL, vR, with k ¼ 1; 2; 3, as
ðRF;Kð½½/h��ðxÞÞk ¼
XN p

j¼1

RK;F
jk NK;jðxÞ; 8x 2K; ðC:2Þ

ðvKðxÞÞk ¼
XNp

j¼1

vK;jkNK;jðxÞ; 8x 2K: ðC:3Þ
If we introduce (C.2) and (C.3) into (C.1), and use the fact that this equation must be satisfied for arbi-
trary test functions vL, vR, then we obtain the following relations for the coefficients of the lifting operator
in (C.2):
RL;F
nk ¼

1

2

XNp

j¼1

ðEL;F
njk /L;j þ F RL;F

njk /R;jÞ;

RR:F
nk ¼

1

2

XNp

j¼1

ðF LR;F
njk /L;j þ ER;F

njk /R;jÞ
with EL;F; F LR;F 2 RNp�Np�3 defined as
EK;F
njk :¼

XNp

i¼1

ðA�1ÞKni D
KK;F
ijk ; F LR;F

njk :¼
XNp

i¼1

ðA�1ÞRniD
LR;F
jik : ðC:4Þ
The matrix M is now constructed as follows:
ðaÞ Initialize M ¼ 0;

ðbÞ ½Mij�KK ¼ BK
ij ; 8i; j 2 f1; . . . ;Npg; 8K 2 f1; . . . ;NTg;

ðcÞ ½Mij�LL  
X
F2Fn

I

½Mij�LL � 1

2
ðCLL;F

ij þ CLL;F
ji Þ þ 1

4
~gF

Xd�1

k¼1

XNp

n¼1

ðEL;F
njk DLL;F

ink þ F LR;F
njk DLR;F

ink Þ
( )

;

ðdÞ ½Mij�LR  
X
F2Fn

I

½Mij�LR � 1

2
ðCRL;F

ij þ CLR;F
ji Þ þ 1

4
~gF

Xd�1

k¼1

XNp

n¼1

ðF RL;F
njk DLL;F

ink þ ER;F
njk DLR;F

ink Þ
( )

;

ðeÞ ½Mij�RL  
X
F2Fn

I

½Mij�RL � 1

2
ðCLR;F

ij þ CRL;F
ji Þ þ 1

4
~gF

Xd�1

k¼1

XNp

n¼1

ðEL;F
njk DRL;F

ink þ F LR;F
njk DRR;F

ink Þ
( )

;

ðfÞ ½Mij�RR  
X
F2Fn

I

½Mij�RR � 1

2
ðCRR;F

ij þ CRR;F
ji Þ þ 1

4
~gF

Xd�1

k¼1

XNp

n¼1

ðF RL;F
njk DRL;F

ink þ ER;F
njk DRR;F

ink Þ
( )

;
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ðgÞ ½Mij�K;KþNT 
X

F2Fn
S

½Mij�K;KþNT þPK;F
ij ðfn;ðmÞ

S Þ�
XNs

l¼1

XNs

k¼1

fn;ðmÞ
S;l fn;ðmÞ

S;k ðR
K;F
ilkj ðf

n;ðmÞ
S Þ�X�;F

ilkj ðf
n;ðmÞ
S ÞÞ

( )
;

8i2f1; . . . ;N pg;8j2f1; . . . ;Nsg;

ðhÞ ½Mij�KþNT;K 
X

F2Fn
S

½Mij�KþNT;KþHK;F
ij þUþ;F

ij þ2
XNp

l¼1

QK;F
ijl Un;ðmÞ

K;l

( )
;

8i2f1; . . . ;N sg;8j2f1; . . . ;N pg;

ðiÞ ½Mij�KþNT;KþNT 
X

F2Fn
S

½Mij�KþNT;KþNT þSK;F
ij

n o
8i;j2f1; . . . ;N sg
with ~gF ¼ gF þ nf and d ¼ dimðEÞ. The righthand side vector F is constructed as follows:
ðjÞ ½F i�K ¼ 0; 8i 2 f1; . . . ;N pg; 8K 2 f1; . . . ;NT þ NSg;
ðkÞ ½F i�K  

X
F2Fn

N

f½F i�K þIK;F
i g; 8i 2 f1; . . . ;Npg;

ðlÞ ½F i�K  
X

F2Fn
S

½F i�K �
XNs

l¼1

XNs

j¼1

XNs

k¼1

fn;ðmÞ
S;l fn;ðmÞ

S;j fn;ðmÞ
S;k RK;F

ijkl ðf
n;ðmÞ
S Þ

(

þ
XNs

j¼1

fn�1
S;j ðY�;F

ij ðf
n;ðmÞ
S Þ þ

XNs

l¼1

XNs

k¼1

fn;ðmÞ
S;l fn;ðmÞ

S;k X�;F
ijkl ðf

n;ðmÞ
S ÞÞ

)
; 8i 2 f1; . . . ;N pg;

ðmÞ ½F i�KþNT  
X

F2Fn
S

½F i�KþNT þ
XNp

j¼1

XNp

l¼1

/n;ðmÞ
K;j /n;ðmÞ

K;l Q
K;F
ijl þ

XNp

j¼1

/n�1
K;jV

�;F
ij

( )
;

8i 2 f1; . . . ;Nsg:
The construction of the matrix on a general unstructured mesh is now straightforward. First, we initialize
all entries to zero, followed by a loop over all elements. Next under (c) till (i) we loop over all faces, com-
pute the block matrix entries for the two elements with indices L and R which are connected to the face
F, and store these entries in the blocks ½M �LR. The same procedure then is followed for the righthand side.
This whole procedure does not depend on the chosen type of elements and is suitable for any unstructured
mesh.
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